42 research outputs found

    Single Lysophosphatidylcholine Components Exhibit Adjuvant Activities In Vitro and In Vivo▿

    No full text
    Improving vaccine immunogenicity by developing new adjuvant formulations has long been a goal of vaccinologists. It has previously been shown that a natural mix of lysophosphatidylcholine (LPC) from chicken eggs promotes mature dendritic cell (DC) generation in vitro and primes antigen-specific immune responses in mice. In the present study, we dissected the adjuvant potentials of five individual LPC components found in the chicken egg mixture. In vitro analyses of the impact of the individual components on the maturation of human DCs were performed by means of phenotypic analysis, chemokine secretion analysis, and analysis of the ability of mature DC to stimulate T lymphocytes. Two components, C16:0-LPC and C18:0-LPC, were identified to be capable of the upregulation of expression of CD86, HLA-DR, and CD40 on in vitro-cultured monocyte-derived DCs from healthy donors. Both induced the release of chemokines to high concentrations (macrophage inflammatory protein 1, monocyte chemoattractant protein 1) or moderate concentrations (interleukin-8 [IL-8], gamma interferon-inducible protein 10). In addition, C16:0-LPC engaged naïve T cells to produce gamma interferon. This suggests that C16:0-LPC and C18:0-LPC have the capacity to promote, at least in vitro, a Th1-oriented response. The intravenous injection of C16:0-LPC or C18:0-LPC into mice resulted in the detectable secretion of IL-6 and IL-5 in sera. Both LPC components were tested for their capacities to act as adjuvants for two selected immunogens: the hepatitis B virus surface antigen and the hepatitis C virus NS3 helicase. The secretion of specific IgG1 was observed with either or both C16:0-LPC and C18:0-LPC, depending on the immunogen tested, and was observed at an efficiency comparable to that of alum. These data identify C16:0-LPC and C18:0-LPC as the active components of the LPC natural mixture. Although discrepancies between the results of the in vitro and in vivo analyses existed, studies with animals suggest that these components can trigger significant and specific humoral-mediated immunity

    A meta-analysis of the antiviral activity of the HBV-specific immunotherapeutic TG1050 confirms its value over a wide range of HBsAg levels in a persistent HBV pre-clinical model

    No full text
    Pre-clinical models mimicking persistent hepatitis B virus (HBV) expression are seldom, do not capture all features of a human chronic infection and due to their complexity, are subject to variability. We report a meta-analysis of seven experiments performed with TG1050, an HBV-targeted immunotherapeutic, in an HBV-persistent mouse model based on the transduction of mice by an adeno-associated virus coding for an infectious HBV genome (AAV-HBV). To mimic the clinical diversity seen in HBV chronically infected patients, AAV-HBV transduced mice displaying variable HBsAg levels were treated with TG1050. Overall mean percentages of responder mice, displaying decrease in important clinical parameters i.e. HBV-DNA (viremia) and HBsAg levels, were 52% and 51% in TG1050 treated mice, compared with 8% and 22%, respectively, in untreated mice. No significant impact of HBsAg level at baseline on response to TG1050 treatment was found. TG1050-treated mice displayed a significant shorter Time to Response (decline in viral parameters) with an Hazard Ratio (HR) of 8.3 for viremia and 2.6 for serum HBsAg. The mean predicted decrease for TG1050-treated mice was 0.5 log for viremia and 0.8 log for HBsAg, at the end of mice follow-up, compared to no decrease for viremia and 0.3 log HBsAg decrease for untreated mice. For mice receiving TG1050, a higher decline of circulating viremia and serum HBsAg level over time was detected by interaction term meta-analysis with a significant treatment effect (p = 0.002 and p<0.001 respectively). This meta-analysis confirms the therapeutic value of TG1050, capable of exerting potent antiviral effects in an HBV-persistent model mimicking clinical situations

    A novel virotherapy encoding human interleukin-7 improves ex vivo T lymphocyte functions in immunosuppressed patients with septic shock and critically ill COVID-19

    No full text
    A majority of patients with sepsis surviving the first days in intensive care units (ICU) enter a state of immunosuppression contributing to their worsening. A novel virotherapy based on the non-propagative Modified Virus Ankara (MVA) expressing the human interleukin-7 (hIL-7) cytokine fused to an Fc fragment, MVA-hIL-7-Fc, was developed and shown to enhance innate and adaptive immunity and confer survival advantages in murine sepsis models. Here, we assessed the capacity of hIL-7-Fc produced by the MVA-hIL-7-Fc to improve ex vivo T lymphocyte functions from ICU patients with sepsis. Primary hepatocytes were transduced with the MVA-hIL-7-Fc or an empty MVA, and cell supernatants containing the secreted hIL-7-Fc were harvested for in vitro and ex vivo studies. Whole blood from ICU patients [septic shock = 15, coronavirus disease 2019 (COVID-19) = 30] and healthy donors (n = 36) was collected. STAT5 phosphorylation, cytokine production, and cell proliferation were assessed upon T cell receptor (TCR) stimulation in presence of MVA-hIL-7-Fc–infected cell supernatants. Cells infected by MVA-hIL-7-Fc produced a dimeric, glycosylated, and biologically active hIL-7-Fc. Cell supernatants containing the expressed hIL-7-Fc triggered the IL-7 pathway in T lymphocytes as evidenced by the increased STAT5 phosphorylation in CD3+ cells from patients and healthy donors. The secreted hIL-7-Fc improved Interferon-γ (IFN-γ) and/or Tumor necrosis factor-α (TNF-α) productions and CD4+ and CD8+ T lymphocyte proliferation after TCR stimulation in patients with bacterial and viral sepsis. This study demonstrates the capacity of the novel MVA-hIL-7-Fc–based virotherapy to restore ex vivo T cells immune functions in ICU patients with sepsis and COVID-19, further supporting its clinical development

    Comparative Vaccine Studies in HLA-A2.1-Transgenic Mice Reveal a Clustered Organization of Epitopes Presented in Hepatitis C Virus Natural Infection

    No full text
    A polyepitopic CD8(+)-T-cell response is thought to be critical for control of hepatitis C virus (HCV) infection. Using transgenic mice, we analyzed the immunogenicity and dominance of most known HLA-A2.1 epitopes presented during infection by using vaccines that carry the potential to enter clinical trials: peptides, DNA, and recombinant adenoviruses. The vaccines capacity to induce specific cytotoxic T lymphocytes and interferon gamma-producing cells revealed that immunogenic epitopes are clustered in specific antigens. For two key antigens, flanking regions were shown to greatly enhance the scope of epitope recognition, whereas a DNA-adenovirus prime-boost vaccination strategy augmented epitope immunogenicity, even that of subdominant ones. The present study reveals a clustered organization of HCV immunogenic HLA.A2.1 epitopes and strategies to modulate their dominance

    First Dominique Dormont International Conference on "Host-pathogen interactions in chronic infections - viral and host determinants of HCV, HCMV, and HIV infections".

    Get PDF
    International audienceThe first Dominique Dormont International Conference on "Viral and host determinantsof HCV, HCMV, and HIV infections "was held in Paris, Val-de-Gr?, on December 3-4, 2004. The following is a summary of the scientific sessions of this meeting (http://www.congres-evenement.fr/ddormont)
    corecore