250 research outputs found

    Use of a process-based model for assessing the methane budgets of global terrestrial ecosystems and evaluation of uncertainty

    Get PDF
    We assessed the global terrestrial budget of methane (CH<sub>4</sub>) by using a process-based biogeochemical model (VISIT) and inventory data for components of the budget that were not included in the model. Emissions from wetlands, paddy fields, biomass burning, and plants, as well as oxidative consumption by upland soils, were simulated by the model. Emissions from ruminant livestock and termites were evaluated by using an inventory approach. These CH<sub>4</sub> flows were estimated for each of the model's 0.5° × 0.5° grid cells from 1901 to 2009, while accounting for atmospheric composition, meteorological factors, and land-use changes. Estimation uncertainties were examined through ensemble simulations using different parameterization schemes and input data (e.g., different wetland maps and emission factors). From 1996 to 2005, the average global terrestrial CH<sub>4</sub> budget was estimated on the basis of 1152 simulations, and terrestrial ecosystems were found to be a net source of 308.3 ± 20.7 Tg CH<sub>4</sub> yr<sup>−1</sup>. Wetland and livestock ruminant emissions were the primary sources. The results of our simulations indicate that sources and sinks are distributed highly heterogeneously over the Earth's land surface. Seasonal and interannual variability in the terrestrial budget was also assessed. The trend of increasing net emission from terrestrial sources and its relationship with temperature variability imply that terrestrial CH<sub>4</sub> feedbacks will play an increasingly important role as a result of future climatic change

    Free radical scavenger, edaravone, reduces the lesion size of lacunar infarction in human brain ischemic stroke

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Although free radicals have been reported to play a role in the expansion of ischemic brain lesions, the effect of free radical scavengers is still under debate. In this study, the temporal profile of ischemic stroke lesion sizes was assessed for more than one year to evaluate the effect of edaravone which might reduce ischemic damage.</p> <p>Methods</p> <p>We sequentially enrolled acute ischemic stroke patients, who admitted between April 2003 and March 2004, into the edaravone(-) group (n = 83) and, who admitted between April 2004 and March 2005, into the edaravone(+) group (n = 93). Because, edaravone has been used as the standard treatment after April 2004 in our hospital. To assess the temporal profile of the stroke lesion size, the ratio of the area [T2-weighted magnetic resonance images (T2WI)/iffusion-weighted magnetic resonance images (DWI)] were calculated. Observations on T2WI were continued beyond one year, and observational times were classified into subacute (1-2 months after the onset), early chronic (3-6 month), late chronic (7-12 months) and old (≥13 months) stages. Neurological deficits were assessed by the National Institutes of Health Stroke Scale upon admission and at discharge and by the modified Rankin Scale at 1 year following stroke onset.</p> <p>Results</p> <p>Stroke lesion size was significantly attenuated in the edaravone(+) group compared with the edaravone(-) group in the period of early and late chronic observational stages. However, this reduction in lesion size was significant within a year and only for the small-vessel occlusion stroke patients treated with edaravone. Moreover, patients with small-vessel occlusion strokes that were treated with edaravone showed significant neurological improvement during their hospital stay, although there were no significant differences in outcome one year after the stroke.</p> <p>Conclusion</p> <p>Edaravone treatment reduced the volume of the infarct and improved neurological deficits during the subacute period, especially in the small-vessel occlusion strokes.</p

    Monoclonal Antibodies Recognizing the Non-Tandem Repeat Regions of the Human Mucin MUC4 in Pancreatic Cancer

    Get PDF
    The MUC4 mucin is a high molecular weight, membrane-bound, and highly glycosylated protein. It is a multi-domain protein that is putatively cleaved into a large mucin-like subunit (MUC4α) and a C-terminal growth-factor like subunit (MUC4β). MUC4 plays critical roles in physiological and pathological conditions and is aberrantly overexpressed in several cancers, including those of the pancreas, cervix, breast and lung. It is also a potential biomarker for the diagnosis, prognosis and progression of several malignancies. Further, MUC4 plays diverse functional roles in cancer initiation and progression as evident from its involvement in oncogenic transformation, proliferation, inhibition of apoptosis, motility and invasion, and resistance to chemotherapy in human cancer cells. We have previously generated a monoclonal antibody 8G7, which is directed against the TR region of MUC4, and has been extensively used to study the expression of MUC4 in several malignancies. Here, we describe the generation of anti-MUC4 antibodies directed against the non-TR regions of MUC4. Recombinant glutathione-S-transferase (GST)-fused MUC4α fragments, both upstream (MUC4α-N-Ter) and downstream (MUC4α-C-Ter) of the TR domain, were used as immunogens to immunize BALB/c mice. Following cell fusion, hybridomas were screened using the aforementioned recombinant proteins ad lysates from human pancreatic cell lines. Three anti MUC4α-N-Ter and one anti-MUC4α-C-Ter antibodies were characterized by several inmmunoassays including enzyme-linked immunosorbent assay (ELISA), immunoblotting, immunofluorescene, flow cytometry and immunoprecipitation using MUC4 expressing human pancreatic cancer cell lines. The antibodies also reacted with the MUC4 in human pancreatic tumor sections in immunohistochemical analysis. The new domain-specific anti-MUC4 antibodies will serve as important reagents to study the structure-function relationship of MUC4 domains and for the development of MUC4-based diagnostics and therapeutics

    Stroke awareness decreases prehospital delay after acute ischemic stroke in korea

    Get PDF
    BACKGROUND: Delayed arrival at hospital is one of the major obstacles in enhancing the rate of thrombolysis therapy in patients with acute ischemic stroke. Our study aimed to investigate factors associated with prehospital delay after acute ischemic stroke in Korea. METHODS: A prospective, multicenter study was conducted at 14 tertiary hospitals in Korea from March 2009 to July 2009. We interviewed 500 consecutive patients with acute ischemic stroke who arrived within 48 hours. Univariate and multivariate analyses were performed to evaluate factors influencing prehospital delay. RESULTS: Among the 500 patients (median 67 years, 62% men), the median time interval from symptom onset to arrival was 474 minutes (interquartile range, 170-1313). Early arrival within 3 hours of symptom onset was significantly associated with the following factors: high National Institutes of Health Stroke Scale (NIHSS) score, previous stroke, atrial fibrillation, use of ambulance, knowledge about thrombolysis and awareness of the patient/bystander that the initial symptom was a stroke. Multivariable logistic regression analysis indicated that awareness of the patient/bystander that the initial symptom was a stroke (OR 4.438, 95% CI 2.669-7.381), knowledge about thrombolysis (OR 2.002, 95% CI 1.104-3.633) and use of ambulance (OR 1.961, 95% CI 1.176-3.270) were significantly associated with early arrival. CONCLUSIONS: In Korea, stroke awareness not only on the part of patients, but also of bystanders, had a great impact on early arrival at hospital. To increase the rate of thrombolysis therapy and the incidence of favorable outcomes, extensive general public education including how to recognize stroke symptoms would be important.ope

    Regulation of pH During Amelogenesis

    Get PDF
    During amelogenesis, extracellular matrix proteins interact with growing hydroxyapatite crystals to create one of the most architecturally complex biological tissues. The process of enamel formation is a unique biomineralizing system characterized first by an increase in crystallite length during the secretory phase of amelogenesis, followed by a vast increase in crystallite width and thickness in the later maturation phase when organic complexes are enzymatically removed. Crystal growth is modulated by changes in the pH of the enamel microenvironment that is critical for proper enamel biomineralization. Whereas the genetic bases for most abnormal enamel phenotypes (amelogenesis imperfecta) are generally associated with mutations to enamel matrix specific genes, mutations to genes involved in pH regulation may result in severely affected enamel structure, highlighting the importance of pH regulation for normal enamel development. This review summarizes the intra- and extracellular mechanisms employed by the enamel-forming cells, ameloblasts, to maintain pH homeostasis and, also, discusses the enamel phenotypes associated with disruptions to genes involved in pH regulation

    Translational Stroke Research Using a Rabbit Embolic Stroke Model: A Correlative Analysis Hypothesis for Novel Therapy Development

    Get PDF
    Alteplase (tissue plasminogen activator, tPA) is currently the only FDA-approved treatment that can be given to acute ischemic stroke (AIS) patients if patients present within 3 h of an ischemic stroke. After 14 years of alteplase clinical research, evidence now suggests that the therapeutic treatment window can be expanded 4.5 h, but this is not formally approved by the FDA. Even though there remains a significant risk of intracerebral hemorrhage associated with alteplase administration, there is an increased chance of favorable outcome with tPA treatment. Over the last 30 years, the use of preclinical models has assisted with the search for new effective treatments for stroke, but there has been difficulty with the translation of efficacy from animals to humans. Current research focuses on the development of new and potentially useful thrombolytics, neuroprotective agents, and devices which are also being tested for efficacy in preclinical and clinical trials. One model in particular, the rabbit small clot embolic stroke model (RSCEM) which was developed to test tPA for efficacy, remains the only preclinical model used to gain FDA approval of a therapeutic for stroke. Correlative analyses from existing preclinical translational studies and clinical trials indicate that there is a therapeutic window ratio (ARR) of 2.43-3 between the RSCEM and AIS patients. In conclusion, the RSCEM can be used as an effective translational tool to gauge the clinical potential of new treatments
    corecore