8 research outputs found

    A state-of-the-art review of curve squeal noise: Phenomena, mechanisms, modelling and mitigation

    Full text link
    [EN] Curve squeal is an intense tonal noise occurring when a rail vehicle negotiates a sharp curve. The phenomenon can be considered to be chaotic, with a widely differing likelihood of occurrence on different days or even times of day. The term curve squeal may include several different phenomena with a wide range of dominant frequencies and potentially different excitation mechanisms. This review addresses the different squeal phenomena and the approaches used to model squeal noise; both time-domain and frequency-domain approaches are discussed and compared. Supporting measurements using test rigs and field tests are also summarised. A particular aspect that is addressed is the excitation mechanism. Two mechanisms have mainly been considered in previous publications. In many early papers the squeal was supposed to be generated by the so-called falling friction characteristic in which the friction coefficient reduces with increasing sliding velocity. More recently the mode coupling mechanism has been raised as an alternative. These two mechanisms are explained and compared and the evidence for each is discussed. Finally, a short review is given of mitigation measures and some suggestions are offered for why these are not always successful.Squicciarini, G.; Thompson, D.; Ding, B.; Baeza González, LM. (2018). A state-of-the-art review of curve squeal noise: Phenomena, mechanisms, modelling and mitigation. Notes on Numerical Fluid Mechanics and Multidisciplinary Design. 139:3-41. https://doi.org/10.1007/978-3-319-73411-8_1S341139Anderson, D., Wheatley, N., Fogarty, B., Jiang, J., Howie, A., Potter, W.: Mitigation of curve squeal noise in Queensland, New South Wales and South Australia. In: Conference on Railway Engineering. pp. 625–636, Perth, Australia (2008)Hanson, D., Jiang, J., Dowdell, B., Dwight, R.: Curve squeal: causes, treatments and results. In INTER-NOISE and NOISE-CON Congress and Conference Proceedings, vol. 249, pp. 6316–6323. Melbourne, Australia (2014)Rudd, M.J.: Wheel/rail noise—part II: wheel squeal. J. Sound Vib. 46(3), 381–394 (1976)Remington, P.J.: Wheel/rail squeal and impact noise: what do we know? What don’t we know? Where do we go from here? J. Sound Vib. 116(2), 339–353 (1987)Remington, P.J.: Wheel/rail rolling noise: what do we know? What don’t we know? Where do we go from here? J. Sound Vib. 120(2), 203–226 (1988)Wickens, A.H.: Fundamentals of Rail Vehicle Dynamics, Guidance and Stability. Swets & Zeitlinger, Lisse (2003)Thompson, D.J.: Railway Noise and Vibration: Mechanisms, Modelling and Mitigation. Elsevier, Oxford (2009)Kalker, J.J.: Three Dimensional Elastic Bodies in Rolling Contact. Kluwer academic publishers, Dordrecht (1990)Vermeulen, P.J., Johnson, K.L.: Contact of nonspherical elastic bodies transmitting tangential forces. J. Appl. Mech. 31(2), 338–340 (1964)Shen, Z.Y., Hedrick, J.K., Elkins, J.A.: A comparison of alternative creep-force models for rail vehicle dynamic analysis. In: Proceedings of 8th IAVSD Symposium, Cambridge MA, Swets and Zeitlinger, Lisse, pp. 591–605 (1983)Huang, Z.Y.: Theoretical Modelling of Railway Curve Squeal. Ph.D. thesis, University of Southampton, UK (2007)Hoffmann, N., Fischer, M., Allgaier, R., Gaul, L.: A minimal model for studying properties of the mode-coupling type instability in friction induced oscillations. Mech. Res. Commun. 29(4), 197–205 (2002)Hoffmann, N., Gaul, L.: Effects of damping on mode-coupling instability in friction induced oscillations. J. Appl. Math. Mech. 83(8), 524–534 (2003)Sinou, J.J., Jezequel, L.: Mode coupling instability in friction-induced vibrations and its dependency on system parameters including damping. Eur. J. Mech.-A/Solids 26(1), 106–122 (2007)Johnson, K.L.: Contact Mechanics. Cambridge University Press, Cambridge (1985)Kinkaid, N.M., O’Reilly, O.M., Papadopoulos, P.: Automotive disc brake squeal. J. Sound Vib. 267(1), 105–166 (2003)Ghazaly, N.M., El-Sharkawy, M., Ahmed, I.: A review of automotive brake squeal mechanisms. J. Mech. Des. Vibr. 1(1), 5–9 (2013)Ouyang, H., Nack, W., Yuan, Y., Chen, F.: Numerical analysis of automotive disc brake squeal: a review. Int. J. Veh. Noise Vib. 1(3–4), 207–231 (2005)Dorf, R.C., Bishop, R.H.: Modern Control Systems, 11th edn. Prentice Hall. (2008)De Beer, F.G., Janssens, M.H.A., Kooijman, P.P., van Vliet, W.J.: Curve squeal of railbound vehicles (part 1): frequency domain calculation model. In: Proceedings of Internoise, vol. 3, pp. 1560–1563. Nice, France (2000)Von Stappenbeck, H.: Das Kurvengeräusch der Straßenbahn. Möglichkeiten zu seiner Unterdrückung. Z. VDI 96(6), 171–175 (1954)Van Ruiten, C.J.M.: Mechanism of squeal noise generated by trams. J. Sound Vib. 120(2), 245–253 (1988)Nakai, M., Chiba, Y., Yokoi, M.: Railway wheel squeal: 1st report, on frequency of squeal. Bull. Jpn. Soc. Mech. Eng. 25, 1127–1134 (1982)Nakai, M., Chiba, Y., Yokoi, M.: Railway wheel squeal: 2nd report, mechanism of specific squeal frequency. Bull. Jpn. Soc. Mech. Eng. 27, 301–308 (1984)Nakai, M., Chiba, Y., Yokoi, M.: Railway wheel squeal: 3rd report, squeal of a disk simulating a wheel in internal resonances. Bull. Jpn. Soc. Mech. Eng. 28, 500–507 (1985)Schneider, E., Popp, K., Irretier, H.: Noise generation in railway wheels due to rail-wheel contact forces. J. Sound Vib. 120(2), 227–244 (1988)Kraft, K.: Der Einfluß der Fahrgeschwindigkeit auf den Haftwert zwischen Rad und Schiene. Arch. für Eisenbahntechnik 22, 58–78 (1967)Fingberg, U.: A model of wheel-rail squealing noise. J. Sound Vib. 143(3), 365–377 (1990)Périard, F.: Wheel-Rail Noise Generation: Curve Squealing by Trams. Ph.D. thesis, Technische Universiteit Delft (1998)Heckl, M.A., Abrahams, I.D.: Curve squeal of train wheels, part 1: mathematical model for its generation. J. Sound Vib. 229(3), 669–693 (2000)Heckl, M.A.: Curve squeal of train wheels, part 2: which wheel modes are prone to squeal? J. Sound Vib. 229(3), 695–707 (2000)Heckl, M.A.: Curve squeal of train wheels: unstable modes and limit cycles. Proc. R. Soc. Lond. A: Math. Phys. Eng. Sci. 458, 1949–1965 (2002)Liu, X., Meehan, P.A.: Wheel squeal noise: a simplified model to simulate the effect of rolling speed and angle of attack. J. Sound Vib. 338, 184–198 (2015)Meehan, P.A., Liu, X.: Analytical prediction and investigation of wheel squeal amplitude. In: Anderson, D., et al. (eds.) Noise and Vibration Mitigation for Rail Transportation Systems. NNFM, vol. 139, pp 69–80. Springer, Heidelberg (2018)Kooijman, P.P., Van Vliet, W.J., Janssens, M.H.A., De Beer, F.G.: Curve squeal of railbound vehicles (part 2): set-up for measurement of creepage dependent friction coefficient. In: Proceedings of Internoise, vol. 3, pp. 1564–1567. Nice, France (2000)De Beer, F.G., Janssens, M.H.A., Kooijman, P.P.: Squeal noise of rail-bound vehicles influenced by lateral contact position. J. Sound Vib. 267(3), 497–507 (2003)Thompson, D.J., Hemsworth, B., Vincent, N.: Experimental validation of the TWINS prediction program for rolling noise, part 1: description of the model and method. J. Sound Vib. 193(1), 123–135 (1996)Monk-Steel, A., Thompson, D.J.: Models for railway curve squeal noise. In: VIII International Conference on Recent Advances in Structural Dynamics, Southampton, UK (2003)Barman, J.F., Katzenelson, J.: A generalized Nyquist-type stability criterion for multivariable feedback systems. Int. J. Control 20(4), 593–622 (1974)Huang, Z.Y., Thompson, D.J., Jones, C.J.C.: Squeal prediction for a bogied vehicle in a curve. In Schulte-Werning, B., et al. (eds.) Noise and Vibration Mitigation for Rail Transportation Systems. NNFM vol. 99, pp. 313–319. Springer, Heidelberg (2008)Hsu, S.S., Huang, Z., Iwnicki, S.D., Thompson, D.J., Jones, C.J., Xie, G., Allen, P.D.: Experimental and theoretical investigation of railway wheel squeal. Proc. Inst. Mech. Eng. Part F: J. Rail Rapid Transit 221(1), 59–73 (2007)Squicciarini, G., Usberti, S., Thompson, D.J., Corradi, R., Barbera, A.: Curve squeal in the presence of two wheel/rail contact points. In: Nielsen, J.C.O., et al. (eds.) Noise and Vibration Mitigation for Rail Transportation Systems. NNFM, vol. 126, pp. 603–610. Springer, Heidelberg (2015)Xie, G., Allen, P.D., Iwnicki, S.D., Alonso, A., Thompson, D.J., Jones, C.J., Huang, Z.Y.: Introduction of falling friction coefficients into curving calculations for studying curve squeal noise. Veh. Syst. Dyn. 44(sup1), 261–271 (2006)Giménez, J.G., Alonso, A., Gómez, E.: Introduction of a friction coefficient dependent on the slip in the FastSim algorithm. Veh. Syst. Dyn. 43(4), 233–244 (2005)Chiello, O., Ayasse, J.B., Vincent, N., Koch, J.R.: Curve squeal of urban rolling stock—part 3: theoretical model. J. Sound Vib. 293(3), 710–727 (2006)Collette, C.: Importance of the wheel vertical dynamics in the squeal noise mechanism on a scaled test bench. Shock Vibr. 19(2), 145–153 (2012)Brunel, J.F., Dufrénoy, P., Naït, M., Muñoz, J.L., Demilly, F.: Transient models for curve squeal noise. J. Sound Vib. 293(3), 758–765 (2006)Glocker, C., Cataldi-Spinola, E., Leine, R.I.: Curve squealing of trains: measurement, modelling and simulation. J. Sound Vib. 324(1), 365–386 (2009)Pieringer, A.: A numerical investigation of curve squeal in the case of constant wheel/rail friction. J. Sound Vib. 333(18), 4295–4313 (2014)Pieringer, A., Kropp, W.: A time-domain model for coupled vertical and tangential wheel/rail interaction—a contribution to the modelling of curve squeal. In: Maeda, T., et al. (eds.) Noise and Vibration Mitigation for Rail Transportation Systems. NNFM, vol. 118, pp. 221–229. Springer, Heidelberg (2012)Pieringer, A., Baeza, L., Kropp. W.: Modelling of railway curve squeal including effects of wheel rotation. In: Nielsen, J.C.O., et al. (eds.) Noise and Vibration Mitigation for Rail Transportation Systems. NNFM, vol. 126, pp. 417–424. Springer, Heidelberg (2015)Zenzerovic, I., Pieringer, A., Kropp. W.: Towards an engineering model for curve squeal. In: Nielsen, J.C.O., et al. (eds.) Noise and Vibration Mitigation for Rail Transportation Systems. NNFM, vol. 126, pp. 433–440. Springer, Heidelberg (2015)Zenzerovic, I., Kropp, W., Pieringer, A.: An engineering time-domain model for curve squeal: tangential point-contact model and Green’s functions approach. J. Sound Vib. 376, 149–165 (2016)Pieringer, A., Torstensson, P.T., Giner, J., Baeza, L.: Investigation of railway curve squeal using a combination of frequency- and time-domain models. In: Anderson, D., et al. (eds.) Noise and Vibration Mitigation for Rail Transportation Systems. NNFM, vol. 139, pp 81–93. Springer, Heidelberg (2018)Chen, G.X., Xiao, J.B., Liu, Q.Y., Zhou. Z.R.: Complex eigenvalue analysis of railway curve squeal. In: Schulte-Werning, B., et al. (eds.) Noise and Vibration Mitigation for Rail Transportation Systems. NNFM, vol. 99, pp. 433–439. Springer, Heidelberg (2008)Fourie, D.J., Gräbe, P.J., Heyns, P.S., Fröhling, R.D.: Analysis of wheel squeal due to unsteady longitudinal creepage using the complex eigenvalue method. In: Anderson, D., et al. (eds.) Noise and Vibration Mitigation for Rail Transportation Systems. NNFM, vol. 139, pp 55–67. Springer, Heidelberg (2018)Wang, C., Dwight, R., Li, W., Jiang, J.: Prediction on curve squeal in the case of constant wheel rail friction coefficient. In: Anderson, D., et al. (eds.) Noise and Vibration Mitigation for Rail Transportation Systems. NNFM, vol. 139, pp XXX–XXX. Springer, Heidelberg (2018)Ding, B., Squicciarini, G., Thompson, D.J.: Effects of rail dynamics and friction characteristics on curve squeal. In: XIII International Conference on Motion and Vibration Control and XII International Conference on Recent Advances in Structural Dynamics (MoViC/RASD), Southampton (2016)Bleedorn, T.G., Johnstone. B.: Steerable steel wheel systems and wheel noise suppression. In: Conference Rec IAS 12th Annual Meeting, Los Angeles, California (1977)Koch, J.R., Vincent, N., Chollet, H., Chiello, O.: Curve squeal of urban rolling stock—part 2: parametric study on a 1/4 scale test rig. J. Sound Vib. 293(3), 701–709 (2006)Logston, C.F., Itami, G.S.: Locomotive friction-creep studies. ASME J. Eng. Ind. 102(3), 275–281 (1980)Ertz, M.: Creep force laws for wheel/rail contact with temperature-dependent coefficient of friction. In: 8th Mini Conference on Vehicle System Dynamics, Identification and Anomalies, Budapest (2002)Lang, W., Roth, R.: Optimale Kraftschlussausnutzung bei Hochleistungs-Schienenfahrzeugen. Eisenbahntechnische Rundsch. 42, 61–66 (1993)Polach, O.: Creep forces in simulations of traction vehicles running on adhesion limit. Wear 258(7), 992–1000 (2005)Zhang, W., Chen, J., Wu, X., Jin, X.: Wheel/rail adhesion and analysis by using full scale roller rig. Wear 253(1), 82–88 (2002)Harrison, H., McCanney, T., Cotter, J.: Recent developments in coefficient of friction measurements at the rail/wheel interface. Wear 253(1), 114–123 (2002)Gallardo-Hernandez, E.A., Lewis, R.: Twin disc assessment of wheel/rail adhesion. Wear 265(9), 1309–1316 (2008)Fletcher, D.I., Lewis, S.: Creep curve measurement to support wear and adhesion modelling, using a continuously variable creep twin disc machine. Wear 298–299, 57–65 (2013)Fletcher, D.I.: A new two-dimensional model of rolling–sliding contact creep curves for a range of lubrication types. Proc. Inst. Mech. Eng. Part J: J. Eng. Tribol. 227(6), 529–537 (2013)Matsumoto, A., Sato, Y., Ono, H., Wang, Y., Yamamoto, M., Tanimoto, M., Oka, Y.: Creep force characteristics between rail and wheel on scaled model. Wear 253(1), 199–203 (2002)Janssens, M.H.A., van Vliet, W.J., Kooijman, P.P., De Beer, F.G.: Curve squeal of railbound vehicles (part 3): measurement method and results. In: Proceedings of Internoise, vol. 3, pp. 1568–1571, Nice, France (2000)Monk-Steel, A.D., Thompson, D.J., De Beer, F.G., Janssens, M.H.A.: An investigation into the influence of longitudinal creepage on railway squeal noise due to lateral creepage. J. Sound Vib. 293(3), 766–776 (2006)Liu, X., Meehan, P.A.: Investigation of the effect of lateral adhesion and rolling speed on wheel squeal noise. Proc. Inst. Mech. Eng. Part F: J. Rail Rapid Transit 227(5), 469–480 (2013)Liu, X., Meehan, P.A.: Investigation of the effect of relative humidity on lateral force in rolling contact and curve squeal. Wear 310(1), 12–19 (2014)Liu, X., Meehan, P.A.: Investigation of squeal noise under positive friction characteristics condition provided by friction modifiers. J. Sound Vib. 371, 393–405 (2016)Jie, E., Kim, J.Y., Hwang, D.H., Lee, J.H., Kim, K.J., Kim, J.C.: An experimental study of squeal noise characteristics for railways using a scale model test rig. In: J. Pombo (ed.) Proceedings of the Third International Conference on Railway Technology: Research, Development and Maintenance, Cagliari, Sardinia, Italy (2016)Eadie, D.T., Santoro, M., Kalousek, J.: Railway noise and the effect of top of rail liquid friction modifiers: changes in sound and vibration spectral distributions in curves. Wear 258(7), 1148–1155 (2005)Bullen, R., Jiang, J.: Algorithms for detection of rail wheel squeal. In: 20th International Congress on Acoustics 2010, ICA 2010—Incorporating Proceedings of the 2010 Annual Conference of the Australian Acoustical Society. pp. 2212–2216 (2010)Stefanelli, R., Dual, J., Cataldi-Spinola, E.: Acoustic modelling of railway wheels and acoustic measurements to determine involved eigenmodes in the curve squealing phenomenon. Veh. Syst. Dyn. 44(sup1), 286–295 (2006)Vincent, N., Koch, J.R., Chollet, H., Guerder, J.Y.: Curve squeal of urban rolling stock—part 1: state of the art and field measurements. J. Sound Vib. 293(3), 691–700 (2006)Anderson, D., Wheatley, N.: Mitigation of wheel squeal and flanging noise on the Australian network. In: Schulte-Werning, B., et al. (eds.) Noise and Vibration Mitigation for Rail Transportation Systems. NNFM, vol. 99, pp. 399–405. Springer, Heidelberg (2008)Curley, D., Anderson, D.C., Jiang, J., Hanson, D.: Field trials of gauge face lubrication and top-of-rail friction modification for curve noise mitigation. In: Nielsen, J.C.O., et al. (eds.) Noise and Vibration Mitigation for Rail Transportation Systems. NNFM, vol. 126, pp. 449–456. Springer, Heidelberg (2015)Jiang, J., Hanson, D., Dowdell, B.: Wheel squeal—insights from wayside condition monitoring measurements and field trials. In: Anderson, D., et al. (eds.) Noise and Vibration Mitigation for Rail Transportation Systems. NNFM, vol. 139, pp 41–53. Springer, Heidelberg (2018)Jiang, J., Dwight, R., Anderson, D.: Field verification of curving noise mechanisms. In: Maeda, T., et al. (eds.) Noise and Vibration Mitigation for Rail Transportation Systems. NNFM, vol. 118, pp. 349–356. Springer, Heidelberg (2012)Jiang, J., Anderson, D.C., Dwight, R.: The mechanisms of curve squeal. In: Nielsen, J.C.O., et al. (eds.) Noise and Vibration Mitigation for Rail Transportation Systems. NNFM, vol. 126, pp. 587–594. Springer, Heidelberg (2015)Fourie, D.J., Gräbe, P.J., Heyns, P.S., Fröhling, R.D.: Experimental characterisation of railway wheel squeal occurring in large-radius curves. Proc. Inst. Mech. Eng. Part F: J. Rail Rapid Transit 230(6), 1561–1574 (2016)Corradi, R., Crosio, P., Manzoni, S., Squicciarini, G.: Experimental investigation on squeal noise in tramway sharp curves. In: Proceedings of the 8th International Conference on Structural Dynamics, EURODYN 2011, Leuven (2011)Merideno, I., Nieto, J., Gil-Negrete, N., Landaberea, A., Iartza, J.: Constrained layer damper modelling and performance evaluation for eliminating squeal noise in trams. Shock and Vibration (2014)Nelson J.T.: Wheel/rail noise control manual, TCRP Report 23 (1997)Krüger, F.: Schall- und Erschütterungsschutz im Schienenverkehr. Expert Verlag, Renningen (2001)Elbers, F., Verheijen, E.: Railway noise technical measures catalogue, UIC report UIC003-01-04fe (2013)Oertli, J.: Combatting curve squeal, phase II, final report, UIC (2005)Eadie, D.T., Santoro, M., Powell, W.: Local control of noise and vibration with KELTRACK™ friction modifier and protector® trackside application: an integrated solution. J. Sound Vib. 267(3), 761–772 (2003)Eadie, D.T., Santoro, M.: Top-of-rail friction control for curve noise mitigation and corrugation rate reduction. J. Sound Vib. 293(3), 747–757 (2006)Suda, Y., Iwasa, T., Komine, H., Tomeoka, M., Nakazawa, H., Matsumoto, K., Nakai, T., Tanimoto, M., Kishimoto, Y.: Development of onboard friction control. Wear 258(7), 1109–1114 (2005)Bühler, S., Thallemer, B.: How to avoid squeal noise on railways: state of the art and practical experience. In: Schulte-Werning, B., et al. (eds.) Noise and Vibration Mitigation for Rail Transportation Systems. NNFM, vol. 99, pp. 406–411. Springer, Heidelberg (2008)Jones, C.J.C., Thompson, D.J.: Rolling noise generated by railway wheels with visco-elastic layers. J. Sound Vib. 231(3), 779–790 (2000)Wetta, P., Demilly, F.: Reduction of wheel squeal noise generated on curves or during braking. In 11th International of Wheelset Congress, Paris (1995)Brunel, J.F., Dufrénoy, P., Demilly, F.: Modelling of squeal noise attenuation of ring damped wheels. Appl. Acoust. 65(5), 457–471 (2004)Marjani, S.R., Younesian, D.: Suppression of train wheel squeal noise by shunted piezoelectric elements. Int. J. Struct. Stab. Dyn. (2016)Heckl, M.A., Huang, X.Y.: Curve squeal of train wheels, part 3: active control. J. Sound Vib. 229(3), 709–735 (2000)Thompson, D.J., Jones, C.J.C., Waters, T.P., Farrington, D.: A tuned damping device for reducing noise from railway track. Appl. Acoust. 68(1), 43–57 (2007)Jiang, J., Ying, I., Hanson, D., Anderson, D.C.: An investigation of the influence of track dynamics on curve noise. In: Nielsen, J.C.O., et al. (eds.) Noise and Vibration Mitigation for Rail Transportation Systems. NNFM, vol. 126, pp. 441–448. Springer, Heidelberg (2015)Toward, M., Squicciarini, G., Thompson, D.J.: Reducing freight wagon noise at source. Int. Railway J. March, 47–49 (2015)Illingworth, R., Pollard, M.G.: The use of steering axle suspensions to reduce wheel and rail wear in curves. Proc. Inst. Mech. Eng. 196(1), 379–385 (1982)Garcia, J.F., Olaizola, X., Martin, L.M., Gimenez, J.G.: Theoretical comparison between different configurations of radial and conventional bogies. Veh. Syst. Dyn. 33(4), 233–259 (2000)Bruni, S., Goodall, R., Mei, T.X., Tsunashima, H.: Control and monitoring for railway vehicle dynamics. Veh. Syst. Dyn. 45(7–8), 743–779 (2007)Hiensch, M., Larsson, P.O., Nilsson, O., Levy, D., Kapoor, A., Franklin, F., Nielsen, J., Ringsberg, J., Josefson, L.: Two-material rail development: field test results regarding rolling contact fatigue and squeal noise behaviour. Wear 258(7), 964–972 (2005)Kopp, E.: Fünf Jahre Erfahrungen mit asymmetrisch geschliffenen Schienenprofilen. Eisenbahn Techn. Rundsch. 40, 665 (1991

    Developing students’ aptitudes through University-Industry collaboration

    No full text
    In addition to the engineering knowledge base that has been traditionally taught, today’s undergraduate engineering students need to be given the opportunity to practice a set of skills that will be demanded to them by future employers, namely: creativity, teamwork, problem solving, leadership and the ability to generate innovative ideas. In order to achieve this and educate engineers with both in-depth technical knowledge and professional skills, universities must carry out their own innovating and find suitable approaches that serve their students. This article presents a novel approach that involves university-industry collaboration. It is based on creating a student community for a particular company, allowing students to deal with real industry projects and apply what they are learning in the classroom. A sample project for the German sports brand adidas is presented, along with the project results and evaluation by students and teachers. The university-industry collaborative approach is shown to be beneficial for both students and industry

    Developing students’ aptitudes through University-Industry collaboration

    Get PDF
    In addition to the engineering knowledge base that has been traditionally taught, today’s undergraduate engineering students need to be given the opportunity to practice a set of skills that will be demanded to them by future employers, namely: creativity, teamwork, problem solving, leadership and the ability to generate innovative ideas. In order to achieve this and educate engineers with both in-depth technical knowledge and professional skills, universities must carry out their own innovating and find suitable approaches that serve their students. This article presents a novel approach that involves university-industry collaboration. It is based on creating a student community for a particular company, allowing students to deal with real industry projects and apply what they are learning in the classroom. A sample project for the German sports brand adidas is presented, along with the project results and evaluation by students and teachers. The university-industry collaborative approach is shown to be beneficial for both students and industry.Además de los conocimientos tradicionales sobre ingeniería, durante sus estudios los estudiantes universitarios requieren poder desarrollar una serie de habilidades críticas para su futuro profesional, tales como creatividad, trabajo en equipo, resolución de problemas, liderazgo e innovación. Por esto, es necesario que las universidades generen nuevas innovaciones en las metodologías de enseñanza. Este artículo presenta un avance en este ámbito, considerando una colaboración universidad-empresa. Esta innovación está basada en la creación de un grupo de trabajo de estudiantes para una empresa, con el objetivo de que los estudiantes pongan en práctica los conocimientos y las habilidades adquiridas en clase en proyectos industriales reales. A modo de ejemplo se presentan los resultados de un proyecto piloto para la empresa alemana adidas, además de la evaluación diagnóstica hecha por los estudiantes y los profesores participantes. De estos resultados se puede deducir que la colaboración entre universidad e industria es beneficiosa para los estudiantes y para la empresa

    The influence of a non-linear lecturing approach on student attention: Implementation and assessment

    No full text
    Este artículo presenta el cambio realizado al enfoque de enseñanza de una asignatura específica. El nuevo enfoque está basado en una estructura no-lineal donde cada lección combina conceptos de diferentes temas, al contrario de la estructura lineal tradicional donde cada tema se trata de forma separada. El objetivo del enfoque no-lineal es incrementar el dinamismo y la motivación del estudiante y fomentar el diálogo profesor-estudiante. Se presentan las evaluaciones recogidas de los estudiantes que fueron enseñados mediante los dos enfoques: lineal y no-lineal. Los resultados muestran que el enfoque de enseñanza no-lineal fue bienvenido y dio lugar a un mayor nivel de dinamismo y motivación entre los estudiantes y a un mayor diálogo profesor-estudiante.This paper presents a change made to the lecturing approach used within a specific course. The new lecturing approach is based on a non-linear structure where each lesson combines concepts from different topics, in contrast to the traditional linear structure in which each topic is treated separately. The objective of the non-linear approach is to increase student dynamism and motivation and to foster teacher-student dialog. Assessments from students who were taught according to the traditional linear structure along with assessments from students who were taught under both the linear and non-linear approaches are presented. Results show that the non-linear lecturing approach was welcomed and led to a higher degree of student dynamism and motivation and to more tea-cher-student dialog

    Developing students’ aptitudes through University-Industry collaboration

    No full text
    In addition to the engineering knowledge base that has been traditionally taught, today’s undergraduate engineering students need to be given the opportunity to practice a set of skills that will be demanded to them by future employers, namely: creativity, teamwork, problem solving, leadership and the ability to generate innovative ideas. In order to achieve this and educate engineers with both in-depth technical knowledge and professional skills, universities must carry out their own innovating and find suitable approaches that serve their students. This article presents a novel approach that involves university-industry collaboration. It is based on creating a student community for a particular company, allowing students to deal with real industry projects and apply what they are learning in the classroom. A sample project for the German sports brand adidas is presented, along with the project results and evaluation by students and teachers. The university-industry collaborative approach is shown to be beneficial for both students and industry.Además de los conocimientos tradicionales sobre ingeniería, durante sus estudios los estudiantes universitarios requieren poder desarrollar una serie de habilidades críticas para su futuro profesional, tales como creatividad, trabajo en equipo, resolución de problemas, liderazgo e innovación. Por esto, es necesario que las universidades generen nuevas innovaciones en las metodologías de enseñanza. Este artículo presenta un avance en este ámbito, considerando una colaboración universidad-empresa. Esta innovación está basada en la creación de un grupo de trabajo de estudiantes para una empresa, con el objetivo de que los estudiantes pongan en práctica los conocimientos y las habilidades adquiridas en clase en proyectos industriales reales. A modo de ejemplo se presentan los resultados de un proyecto piloto para la empresa alemana adidas, además de la evaluación diagnóstica hecha por los estudiantes y los profesores participantes. De estos resultados se puede deducir que la colaboración entre universidad e industria es beneficiosa para los estudiantes y para la empresa

    The influence of a non-linear lecturing approach on student attention: Implementation and assessment

    Get PDF
    This paper presents a change made to the lecturing approach used within a specific course. The new lecturing approach is based on a non-linear structure where each lesson combines concepts from different topics, in contrast to the traditional linear structure in which each topic is treated separately. The objective of the non-linear approach is to increase student dynamism and motivation and to foster teacher-student dialog. Assessments from students who were taught according to the traditional linear structure along with assessments from students who were taught under both the linear and non-linear approaches are presented. Results show that the non-linear lecturing approach was welcomed and led to a higher degree of student dynamism and motivation and to more tea-cher-student dialog.Este artículo presenta el cambio realizado al enfoque de enseñanza de una asignatura específica. El nuevo enfoque está basado en una estructura no-lineal donde cada lección combina conceptos de diferentes temas, al contrario de la estructura lineal tradicional donde cada tema se trata de forma separada. El objetivo del enfoque no-lineal es incrementar el dinamismo y la motivación del estudiante y fomentar el diálogo profesor-estudiante. Se presentan las evaluaciones recogidas de los estudiantes que fueron enseñados mediante los dos enfoques: lineal y no-lineal. Los resultados muestran que el enfoque de enseñanza no-lineal fue bienvenido y dio lugar a un mayor nivel de dinamismo y motivación entre los estudiantes y a un mayor diálogo profesor-estudiante

    Constrained Layer Damper Modelling and Performance Evaluation for Eliminating Squeal Noise in Trams

    No full text
    This paper presents the modelling and design of a constrained layer damper to eliminate squeal noise in a particular tram. Even though resilient wheels are installed in every bogie, squeal noise is generated at the frequency of 780–800 Hz due to the small radius curves that the tram has to draw. Tuned constrained layer dampers provide a solution to this particular problem. Butyl rubber is chosen as the viscoelastic material for the damper, and conventional steel is used for the metallic sheets. The modelling approach and the final design of the damper are presented, together with evaluation of its performance in a real application. Experimental measurements on track have demonstrated that the constrained layer damper is properly tuned to the squealing frequency and that there is a significant reduction in noise when the proposed damper is attached to the wheels

    Influence of Sandwich-Type Constrained Layer Damper Design Parameters on Damping Strength

    No full text
    This paper presents a theoretical study of the parameters that influence sandwich-type constrained layer damper design. Although there are different ways to reduce the noise generated by a railway wheel, most devices are based on the mechanism of increasing wheel damping. Sandwich-type constrained layer dampers can be designed so their resonance frequencies coincide with the wheel’s resonant vibration frequencies, and thus the damping effect can be concentrated within the frequency ranges of interest. However, the influence of design parameters has not yet been studied. Based on a number of numerical simulations, this paper provides recommendations for the design stages of sandwich-type constrained layer dampers
    corecore