48 research outputs found

    Meiotic and mitotic functions of mammalian RAD 18 in DNA double-strand break repair

    Get PDF
    This thesis focuses on the role of RAD 18 in DNA double-strand break (DSB ) repair. Much is known about the role of RAD 18, and its critical substrate PCNA in replication damage bypass (RDB ) repair. However, the roles of RAD 18 in DSB repair are still elusive, although several interaction partners of RAD 18 have been identified, and the radiation-sensitivity of Rad18 knockout cells has shown that this E3 ligase is active in DSB repair. First, a general introduction on the possible involvement of RAD 18 in DSB repair mechanisms and RDB that operate in mitotic and meiotic cells is presented in Chapter 1. In Chapter 2, we examined the dynamic localization of human RAD 18 during the cell cycle and after DNA damage in living cells. The DNA damage response functio

    Repair of exogenous DNA double-strand breaks promotes chromosome synapsis in SPO11-mutant mouse meiocytes, and is altered in the absence of HORMAD1

    Get PDF
    Repair of SPO11-dependent DNA double-strand breaks (DSBs) via homologous recombination (HR) is essential for stable homologous chromosome pairing and synapsis during meiotic prophase. Here, we induced radiation-induced DSBs to study meiotic recombination and homologous chromosome pairing in mouse meiocytes in the absence of SPO11 activity (Spo11YF/YF model), and in the absence of both SPO11 and HORMAD1 (Spo11/Hormad1 dko). Within 30 min after 5 Gy irradiation of Spo11YF/YF mice, 140–160 DSB repair foci were detected, which specifically localized to the synaptonemal complex axes. Repair of radiation-induced DSBs was incomplete in Spo11YF/YF compared to Spo11+/YF meiocytes. Still, repair of exogenous DSBs promoted partial recovery of chromosome pairing and synapsis in Spo11YF/YF meiocytes. This indicates that at least part of the exogenous DSBs can be processed in an interhomolog recombination repair pathway. Interestingly, in a seperate experiment, using 3 Gy of irradiation, we observed that Spo11/Hormad1 dko spermatocytes contained fewer remaining DSB repair foci at 48 h after irradiation compared to irradiated Spo11 knockout spermatocytes. Together, these results show that recruitment of exogenous DSBs to the synaptonemal complex, in conjunction with repair of exogenous DSBs via the homologous chromosome, contributes to homology recognition. In addition, the data suggest a role for HORMAD1 in DNA repair pathway choice in mouse meiocytes

    Certification of butyltins and phenyltins in marine sediment certified reference material by species-specific isotope-dilution mass spectrometric analysis using synthesized (118)Sn-enriched organotin compounds

    Get PDF
    A new marine sediment certified reference material, NMIJ CRM 7306-a, for butyltin and phenyltin analysis has been prepared and certified by the National Metrological Institute of Japan at the National Institute of Advanced Industrial Science and Technology (NMIJ/AIST). Candidate sediment material was collected at a bay near industrial activity in Japan. After air-drying, sieving, and mixing the material was sterilized with γ-ray irradiation. The material was re-mixed and packaged into 250 glass bottles (15 g each) and these were stored in a freezer at −30 °C. Certification was performed by use of three different types of species-specific isotope-dilution mass spectrometry (SSID–MS)—SSID–GC–ICP–MS, SSID–GC–MS, and SSID–LC–ICP–MS, with (118)Sn-enriched organotin compounds synthesized from (118)Sn-enriched metal used as a spike. The (118)Sn-enriched mono-butyltin (MBT), dibutyltin (DBT), and tributyltin (TBT) were synthesized as a mixture whereas the (118)Sn-enriched di-phenyltin (DPhT) and triphenyltin (TPhT) were synthesized individually. Four different extraction methods, mechanical shaking, ultrasonic, microwave-assisted, and pressurized liquid extraction, were adopted to avoid possible analytical bias caused by non-quantitative extraction and degradation or inter-conversion of analytes in sample preparations. Tropolone was used as chelating agent in all the extraction methods. Certified values are given for TBT 44±3 μg kg(−1) as Sn, DBT 51 ± 2 μg kg(−1) as Sn, MBT 67 ± 3 μg kg(−1) as Sn, TPhT 6.9 ± 1.2 μg kg(−1) as Sn, and DPhT 3.4 ± 1.2 μg kg(−1) as Sn. These levels are lower than in other sediment CRMs currently available for analysis of organotin compounds

    SPO11-Independent DNA Repair Foci and Their Role in Meiotic Silencing

    Get PDF
    In mammalian meiotic prophase, the initial steps in repair of SPO11-induced DNA double-strand breaks (DSBs) are required to obtain stable homologous chromosome pairing and synapsis. The X and Y chromosomes pair and synapse only in the short pseudo-autosomal regions. The rest of the chromatin of the sex chromosomes remain unsynapsed, contains persistent meiotic DSBs, and the whole so-called XY body undergoes meiotic sex chromosome inactivation (MSCI). A more general mechanism, named meiotic silencing of unsynapsed chromatin (MSUC), is activated when autosomes fail to synapse. In the absence of SPO11, many chromosomal regions remain unsynapsed, but MSUC takes place only on part of the unsynapsed chromatin. We asked if spontaneous DSBs occur in meiocytes that lack a functional SPO11 protein, and if these might be involved in targeting the MSUC response to part of the unsynapsed chromatin. We generated mice carrying a point mutation that disrupts the predicted catalytic site of SPO11 (Spo11YF/YF), and blocks its DSB-inducing activity. Interestingly, we observed foci of proteins involved in the processing of DNA damage, such as RAD51, DMC1, and RPA, both in Spo11YF/YFand Spo11 knockout meiocytes. These foci preferentially localized to the areas that undergo MSUC and form the so-called pseudo XY body. In SPO11-deficient oocytes, the number

    Human RAD18 Interacts with Ubiquitylated Chromatin Components and Facilitates RAD9 Recruitment to DNA Double Strand Breaks

    Get PDF
    RAD18 is an ubiquitin ligase involved in replicative damage bypass and DNA double-strand break (DSB) repair processes. We found that RPA is required for the dynamic pattern of RAD18 localization during the cell cycle, and for accumulation of RAD18 at sites of γ-irradiation-induced DNA damage. In addition, RAD18 colocalizes with chromatin-associated conjugated ubiquitin and ubiquitylated H2A throughout the cell cycle and following irradiation. This localization pattern depends on the presence of an intact, ubiquitin-binding Zinc finger domain. Using a biochemical approach, we show that RAD18 directly binds to ubiquitylated H2A and several other unknown ubiquitylated chromatin components. This interaction also depends on the RAD18 Zinc finger, and increases upon the induction of DSBs by γ-irradiation. Intriguingly, RAD18 does not always colocalize with regions that show enhanced H2A ubiquitylation. In human female primary fibroblasts, where one of the two X chromosomes is inactivated to equalize X-chromosomal gene expression between male (XY) and female (XX) cells, this inactive X is enriched for ubiquitylated H2A, but only rarely accumulates RAD18. This indicates that the binding of RAD18 to ubiquitylated H2A is context-dependent. Regarding the functional relevance of RAD18 localization at DSBs, we found that RAD18 is required for recruitment of RAD9, one of the components of the 9-1-1 checkpoint complex, to these sites. Recruitment of RAD9 requires the functions of the RING and Zinc finger domains of RAD18. Together, our data indicate that association of RAD18 with DSBs through ubiquitylated H2A and other ubiquitylated chromatin components allows recruitment of RAD9, which may function directly in DSB repair, independent of downstream activation of the checkpoint kinases CHK1 and CHK2

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Modulation of Ubc4p/Ubc5p-Mediated Stress Responses by the RING-Finger-Dependent Ubiquitin-Protein Ligase Not4p in Saccharomyces cerevisiae

    No full text
    The Ccr4-Not complex consists of nine subunits and acts as a regulator of mRNA biogenesis in Saccharomyces cerevisiae. The human ortholog of yeast NOT4, CNOT4, displays UbcH5B-dependent ubiquitin-protein ligase (E3 ligase) activity in a reconstituted in vitro system. However, an in vivo role for this enzymatic activity has not been identified. Site-directed mutagenesis of the RING finger of yeast Not4p identified residues required for interaction with Ubc4p and Ubc5p, the yeast orthologs of UbcH5B. Subsequent in vitro assays with purified Ccr4-Not complexes showed Not4p-mediated E3 ligase activity, which was dependent on the interaction with Ubc4p. To investigate the in vivo relevance of this activity, we performed synthetic genetic array (SGA) analyses using not4Δ and not4L35A alleles. This indicates involvement of the RING finger of Not4p in transcription, ubiquitylation, and DNA damage responses. In addition, we found a phenotypic overlap between deletions of UBC4 and mutants encoding single-amino-acid substitutions of the RING finger of Not4p. Together, our results show that Not4p functions as an E3 ligase by modulating Ubc4p/Ubc5p-mediated stress responses in vivo
    corecore