424 research outputs found

    Expression of Keratin 10 in Rat Organ Surface Primo-vascular Tissues

    Get PDF
    AbstractThe primo-vascular system is described as the anatomical structure corresponding to acupuncture meridians and has been identified in several tissues in the body, but its detailed anatomy and physiology are not well understood. Recently, the presence of keratin 10 (Krt10) in primo-vascular tissue was reported, but this finding has not yet been confirmed. In this study, we compared Krt10 expression in primo-vascular tissues located on the surface of rat abdominal organs with Krt10 expression on blood and lymphatic vessels. Krt10 protein (approximately 56.5 kDa) was evaluated by western blot analysis and immunohistochemistry. Krt10 (IR) in the primo-node was visualized as patchy spots around each cell or as a follicle-like structure containing a group of cells. Krt10 IR was also identified in vascular and lymphatic tissues, but its distribution was diffuse over the extracellular matrix of the vessels. Thus Krt10 protein was expressed in all three tissues tested, but the expression pattern of Krt10 in primo-vascular tissue differed from those of blood and lymphatic vascular tissues, suggesting that structural and the regulatory roles of Krt10 in primo-vascular system are different from those in blood and lymphatic vessels

    Analysis of the Relationship between Cerebellar Volume and Psychological Parameters in 20s Male Adults

    Get PDF
    AbstractThis study measured the cerebellar volume of normal male adults in 20s with magnetic resonance imaging (MRI) and analysed the relationship between cerebellar volume and various psychological parameters. The cerebellar volume of 58 males (mean age, 24.0-2.8 years) was measured using MRI. The Symptom Checklist-90-R (SCL-90-R) and the Component of Type A Behavior tests were performed. Using linear regression analysis, the relationship between cerebellar volume and psychological parameters was analysed. As phobic anxiety and ambition increased, cerebellar volume of normal male subjects in 20s decreased. This study showed that for even normal male adults, there exists a possible relationship between various psychological parameters and cerebellar volume

    Development of Monoclonal Antibodies Against Human IRF-5 and Their Use in Identifying the Binding of IRF-5 to Nuclear Import Proteins Karyopherin-α1 and -β1

    Get PDF
    PURPOSE: IRF-5 is a direct transducer of virus-mediated and TLR-mediated signaling pathways for the expression of cytokines and chemokines which form homodimers or heterodimers with IRF-7. However, direct IRF-5-specific monoclonal antibodies (mAbs) are not available at present. These could be used to further evaluate the functions of IRF-5. In this study, we produced and characterized three mouse mAbs to human IRF-5. The binding of IRF-5 to nuclear import proteins was first identified using a mAb. MATERIALS AND METHODS: His-tagged human IRF-5 protein spanning amino acid residues 193-257 was used as an antigen and three mAbs were produced. The mAbs were tested with ELISA, Western blot analysis (WB), immunofluorescent staining (IF), and immunoprecipitation (IP). In addition, the nuclear import protein which carried phosphorylated IRF-5 was identified using one of these mAbs. RESULTS: MAbs 5IRF8, 5IRF10 and 5IRF24 which reacted with the recombinant His-IRF-5(193-257) protein were produced. All mAbs bound to human IRF-5, but not to IRF-3 or IRF-7. They could be used for WB, IF, and IP studies. The binding of phosphorylated IRF-5 to karyopherin-alpha1 and -beta1 was also identified. CONCLUSION: Human IRF-5-specific mAbs are produced for studying the immunologic roles related to IRF-5. Phosphorylated IRF-5 is transported to the nucleus by binding to nuclear import proteins karyopherin-alpha1 and -beta1.ope

    Safety and feasibility of countering neurological impairment by intravenous administration of autologous cord blood in cerebral palsy

    Get PDF
    <p>Abstract</p> <p>Backgrounds</p> <p>We conducted a pilot study of the infusion of intravenous autologous cord blood (CB) in children with cerebral palsy (CP) to assess the safety and feasibility of the procedure as well as its potential efficacy in countering neurological impairment.</p> <p>Methods</p> <p>Patients diagnosed with CP were enrolled in this study if their parents had elected to bank their CB at birth. Cryopreserved CB units were thawed and infused intravenously over 10~20 minutes. We assessed potential efficacy over 6 months by brain magnetic resonance imaging (MRI)-diffusion tensor imaging (DTI), brain perfusion single-photon emission computed tomography (SPECT), and various evaluation tools for motor and cognitive functions.</p> <p>Results</p> <p>Twenty patients received autologous CB infusion and were evaluated. The types of CP were as follows: 11 quadriplegics, 6 hemiplegics, and 3 diplegics. Infusion was generally well-tolerated, although 5 patients experienced temporary nausea, hemoglobinuria, or urticaria during intravenous infusion. Diverse neurological domains improved in 5 patients (25%) as assessed with developmental evaluation tools as well as by fractional anisotropy values in brain MRI-DTI. The neurologic improvement occurred significantly in patients with diplegia or hemiplegia rather than quadriplegia.</p> <p>Conclusions</p> <p>Autologous CB infusion is safe and feasible, and has yielded potential benefits in children with CP.</p

    The Traditional Herbal Medicine, Dangkwisoo-San, Prevents Cerebral Ischemic Injury through Nitric Oxide-Dependent Mechanisms

    Get PDF
    Dangkwisoo-San (DS) is an herbal extract that is widely used in traditional Korean medicine to treat traumatic ecchymosis and pain by promoting blood circulation and relieving blood stasis. However, the effect of DS in cerebrovascular disease has not been examined experimentally. The protective effects of DS on focal ischemic brain were investigated in a mouse model. DS stimulated nitric oxide (NO) production in human brain microvascular endothelial cells (HBMECs). DS (10–300 μg/mL) produced a concentration-dependent relaxation in mouse aorta, which was significantly attenuated by the nitric oxide synthase (NOS) inhibitor L-NAME, suggesting that DS causes vasodilation via a NO-dependent mechanism. DS increased resting cerebral blood flow (CBF), although it caused mild hypotension. To investigate the effect of DS on the acute cerebral injury, C57/BL6J mice received 90 min of middle cerebral artery occlusion followed by 22.5 h of reperfusion. DS administered 3 days before arterial occlusion significantly reduced cerebral infarct size by 53.7% compared with vehicle treatment. However, DS did not reduce brain infarction in mice treated with the relatively specific endothelial NOS (eNOS) inhibitor, N5-(1-iminoethyl)-L-ornithine, suggesting that the neuroprotective effect of DS is primarily endothelium-dependent. This correlated with increased phosphorylation of eNOS in the brains of DS-treated mice. DS acutely improves CBF in eNOS-dependent vasodilation and reduces infarct size in focal cerebral ischemia. These data provide causal evidence that DS is cerebroprotective via the eNOS-dependent production of NO, which ameliorates blood circulation

    Stemness Evaluation of Mesenchymal Stem Cells from Placentas According to Developmental Stage: Comparison to Those from Adult Bone Marrow

    Get PDF
    This study was done to evaluate the stemness of human mesenchymal stem cells (hMSCs) derived from placenta according to the development stage and to compare the results to those from adult bone marrow (BM). Based on the source of hMSCs, three groups were defined: group I included term placentas, group II included first-trimester placentas, and group III included adult BM samples. The stemness was evaluated by the proliferation capacity, immunophenotypic expression, mesoderm differentiation, expression of pluripotency markers including telomerase activity. The cumulative population doubling, indicating the proliferation capacity, was significantly higher in group II (P<0.001, 31.7±5.8 vs. 15.7±6.2 with group I, 9.2±4.9 with group III). The pattern of immunophenotypic expression and mesoderm differentiation into adipocytes and osteocytes were similar in all three groups. The expression of pluripotency markers including ALP, SSEA-4, TRA-1-60, TRA-1-81, Oct-4, and telomerase were strongly positive in group II, but very faint positive in the other groups. In conclusions, hMSCs from placentas have different characteristics according to their developmental stage and express mesenchymal stemness potentials similar to those from adult human BMs
    corecore