12 research outputs found

    Identification of gut dysbiosis in axial spondyloarthritis patients and improvement of experimental ankylosing spondyloarthritis by microbiome-derived butyrate with immune-modulating function

    Get PDF
    IntroductionDysbiosis is an environmental factor that affects the induction of axial spondyloarthritis (axSpA) pathogenesis. In the present study, we investigated differences in the gut microbiota of patients with axSpA and revealed an association between specific gut microbiota and their metabolites, and SpA pathogenesis.MethodUsing 16S rRNA sequencing data derived from feces samples of 33 axSpA patients and 20 healthy controls (HCs), we examined the compositions of their gut microbiomes.ResultsAs a result, axSpA patients were found to have decreased Ī±-diversity compared to HCs, indicating that axSpA patients have less diverse microbiomes. In particular, at the species level, Bacteroides and Streptococcus were more abundant in axSpA patients than in HCs, whereas Faecalibacterium (F). prausnitzii, a butyrate-producing bacteria, was more abundant in HCs. Thus, we decided to investigate whether F. prausnitzii was associated with health conditions by inoculating F. prausnitzii (0.1, 1, and 10 Ī¼g/mL) or by administrating butyrate (0.5 mM) into CD4+ T cells derived from axSpA patients. The levels of IL-17A and IL-10 in the CD4+ T cell culture media were then measured. We also assessed osteoclast formation by administrating butyrate to the axSpA-derived peripheral blood mononuclear cells. The CD4+ IL-17A+ T cell differentiation, IL-17A levels were decreased, whereas IL-10 was increased by F. prausnitzii inoculation. Butyrate reduced CD4+ IL-17A+ T cell differentiation and osteoclastogenesis.DiscussionWe found that CD4+ IL-17A+ T cell polarization was reduced, when F. prausnitzii or butyrate were introduced into curdlan-induced SpA mice or CD4+ T cells of axSpA patient. Consistently, butyrate treatment was associated with the reduction of arthritis scores and inflammation levels in SpA mice. Taken together, we concluded that the reduced abundance of butyrate-producing microbes, particularly F. prausnitzii, may be associated with axSpA pathogenesis

    TRIP13 Participates in Immediate-Early Sensing of DNA Strand Breaks and ATM Signaling Amplification through MRE11

    Get PDF
    Thyroid hormone receptor-interacting protein 13 (TRIP13) participates in various regulatory steps related to the cell cycle, such as the mitotic spindle assembly checkpoint and meiotic recombination, possibly by interacting with members of the HORMA domain protein family. Recently, it was reported that TRIP13 could regulate the choice of the DNA repair pathway, i.e., homologous recombination (HR) or nonhomologous end-joining (NHEJ). However, TRIP13 is recruited to DNA damage sites within a few seconds after damage and may therefore have another function in DNA repair other than regulation of the pathway choice. Furthermore, the depletion of TRIP13 inhibited both HR and NHEJ, suggesting that TRIP13 plays other roles besides regulation of choice between HR and NHEJ. To explore the unidentified functions of TRIP13 in the DNA damage response, we investigated its genome-wide interaction partners in the context of DNA damage using quantitative proteomics with proximity labeling. We identified MRE11 as a novel interacting partner of TRIP13. TRIP13 controlled the recruitment of MDC1 to DNA damage sites by regulating the interaction between MDC1 and the MRN complex. Consistently, TRIP13 was involved in ATM signaling amplification. Our study provides new insight into the function of TRIP13 in immediate-early DNA damage sensing and ATM signaling activation

    Volumetric, Radiographic, and Histologic Analyses of Demineralized Dentin Matrix Combined with Recombinant Human Bone Morphogenetic Protein-2 for Ridge Preservation: A Prospective Randomized Controlled Trial in Comparison with Xenograft

    No full text
    The aim of this study was to evaluate the clinical, volumetric, radiographic, and histologic aspects of autogenous demineralized dentin matrix (DDM) combined with recombinant human bone morphogenetic protein-2 (rhBMP-2) used for ridge preservation, compared to those of deproteinized bovine bone with collagen (DBBC). Following atraumatic extraction, the socket was filled with DBBC, DDM, or rhBMP-2/DDM. Scanned images of dental casts and cone beam computed tomographs (CBCT) were superimposed for the calculation of soft and hard tissue volume alteration. Preoperative and postoperative measurements of the height and width of the alveolar ridge were compared using CBCT images. After 4 months, bone specimens were harvested for histomorphometric assessment. Loss of hard and soft tissue volume occurred at 4 months after extraction and ridge preservation in all groups. No volumetric differences were detected among the three groups before and 4 months after ridge preservation. The reduction in the horizontal width at 5 mm was higher in the DBBC compared to the DDM. Histologically, approximately 40% newly formed bone was founded in rhBMP-2/DDM group. The autogenous dentin matrix used to fill the socket was as beneficial for ridge preservation as conventional xenografts. The combination of rhBMP-2 with dentin matrix also demonstrated appreciable volumetric stability and higher new bone formation compared to DDM alone and DBBC

    Oxidized LDL accelerates cartilage destruction and inflammatory chondrocyte death in osteoarthritis by disrupting the TFEB-regulated autophagy-lysosome pathway

    No full text
    Osteoarthritis (OA) involves cartilage degeneration, thereby causing inflammation and pain. Cardiovascular diseases, such as dyslipidemia, are risk factors for OA; however, the mechanism is unclear. We investigated the effect of dyslipidemia on the development of OA. Treatment of cartilage cells with low-density lipoprotein (LDL) enhanced abnormal autophagy but suppressed normal autophagy and reduced the activity of transcription factor EB (TFEB), which is important for the function of lysosomes. Treatment of LDL-exposed chondrocytes with rapamycin, which activates TFEB, restored normal autophagy. Also, LDL enhanced the inflammatory death of chondrocytes, an effect reversed by rapamycin. In an animal model of hyperlipidemia-associated OA, dyslipidemia accelerated the development of OA, an effect reversed by treatment with a statin, an anti-dyslipidemia drug, or rapamycin, which activates TFEB. Dyslipidemia reduced the autophagic flux and induced necroptosis in the cartilage tissue of patients with OA. The levels of triglycerides, LDL, and total cholesterol were increased in patients with OA compared to those without OA. The C-reactive protein level of patients with dyslipidemia was higher than that of those without dyslipidemia after total knee replacement arthroplasty. In conclusion, oxidized LDL, an important risk factor of dyslipidemia, inhibited the activity of TFEB and reduced the autophagic flux, thereby inducing necroptosis in chondrocytes

    SARS-CoV-2 spike protein accelerates systemic sclerosis by increasing inflammatory cytokines, Th17 cells, and fibrosis

    No full text
    Abstract Background Coronavirus disease 2019 (COVID-19) induces a dysfunctional immune response, inflammation, autoantibody production, and coagulopathy, which are symptoms that bear resemblance to those of autoimmune diseases, including systemic sclerosis (SSc). Methods While there is a single case report suggesting an association between COVID-19 and SSc, the effects of COVID-19 on SSc are not yet fully understood. Human embryonic kidney 293 (HEK293) cells were transfected with the SARS-CoV-2 spike protein gene, in the presence of TGF-Ī². The expression levels of fibrosis-related proteins were measured via Western blotting. A bleomycin (BLM)-induced SSc mouse model was employed, wherein mice were injected with the gene encoding the SARS-CoV-2 spike protein and the ACE2 receptor. The levels of fibrosis, autoantibodies, thrombotic factors, and inflammatory cytokines in tissues and serum were analyzed. Results In vitro, the expression levels of fibrosis marker proteins were elevated in the spike protein group compared to the control group. In vivo, the skin thickness of SSc mice increased following exposure to the SARS-CoV-2 spike protein. Furthermore, the levels of autoantibodies and thrombotic factors, such as anti-phospholipid antibodies (APLA), were significantly increased in the presence of the protein. Flow cytometry analysis revealed increased expression of the proinflammatory cytokine IL-17 in the skin, lungs, and blood. Moreover, tissue fibrosis and levels of inflammatory cytokines in skin and lung tissues were markedly escalated in SSc mice subjected to the protein. Conclusion COVID-19 may accelerate the development and progression of SSc by intensifying fibrosis through the upregulation of inflammation, autoantibody production, and thrombosis

    DataSheet_1_Identification of gut dysbiosis in axial spondyloarthritis patients and improvement of experimental ankylosing spondyloarthritis by microbiome-derived butyrate with immune-modulating function.docx

    No full text
    IntroductionDysbiosis is an environmental factor that affects the induction of axial spondyloarthritis (axSpA) pathogenesis. In the present study, we investigated differences in the gut microbiota of patients with axSpA and revealed an association between specific gut microbiota and their metabolites, and SpA pathogenesis.MethodUsing 16S rRNA sequencing data derived from feces samples of 33 axSpA patients and 20 healthy controls (HCs), we examined the compositions of their gut microbiomes.ResultsAs a result, axSpA patients were found to have decreased Ī±-diversity compared to HCs, indicating that axSpA patients have less diverse microbiomes. In particular, at the species level, Bacteroides and Streptococcus were more abundant in axSpA patients than in HCs, whereas Faecalibacterium (F). prausnitzii, a butyrate-producing bacteria, was more abundant in HCs. Thus, we decided to investigate whether F. prausnitzii was associated with health conditions by inoculating F. prausnitzii (0.1, 1, and 10 Ī¼g/mL) or by administrating butyrate (0.5 mM) into CD4+ T cells derived from axSpA patients. The levels of IL-17A and IL-10 in the CD4+ T cell culture media were then measured. We also assessed osteoclast formation by administrating butyrate to the axSpA-derived peripheral blood mononuclear cells. The CD4+ IL-17A+ T cell differentiation, IL-17A levels were decreased, whereas IL-10 was increased by F. prausnitzii inoculation. Butyrate reduced CD4+ IL-17A+ T cell differentiation and osteoclastogenesis.DiscussionWe found that CD4+ IL-17A+ T cell polarization was reduced, when F. prausnitzii or butyrate were introduced into curdlan-induced SpA mice or CD4+ T cells of axSpA patient. Consistently, butyrate treatment was associated with the reduction of arthritis scores and inflammation levels in SpA mice. Taken together, we concluded that the reduced abundance of butyrate-producing microbes, particularly F. prausnitzii, may be associated with axSpA pathogenesis.</p
    corecore