6 research outputs found

    SARS-CoV-2 introductions and early dynamics of the epidemic in Portugal

    Get PDF
    Genomic surveillance of SARS-CoV-2 in Portugal was rapidly implemented by the National Institute of Health in the early stages of the COVID-19 epidemic, in collaboration with more than 50 laboratories distributed nationwide. Methods By applying recent phylodynamic models that allow integration of individual-based travel history, we reconstructed and characterized the spatio-temporal dynamics of SARSCoV-2 introductions and early dissemination in Portugal. Results We detected at least 277 independent SARS-CoV-2 introductions, mostly from European countries (namely the United Kingdom, Spain, France, Italy, and Switzerland), which were consistent with the countries with the highest connectivity with Portugal. Although most introductions were estimated to have occurred during early March 2020, it is likely that SARS-CoV-2 was silently circulating in Portugal throughout February, before the first cases were confirmed. Conclusions Here we conclude that the earlier implementation of measures could have minimized the number of introductions and subsequent virus expansion in Portugal. This study lays the foundation for genomic epidemiology of SARS-CoV-2 in Portugal, and highlights the need for systematic and geographically-representative genomic surveillance.We gratefully acknowledge to Sara Hill and Nuno Faria (University of Oxford) and Joshua Quick and Nick Loman (University of Birmingham) for kindly providing us with the initial sets of Artic Network primers for NGS; Rafael Mamede (MRamirez team, IMM, Lisbon) for developing and sharing a bioinformatics script for sequence curation (https://github.com/rfm-targa/BioinfUtils); Philippe Lemey (KU Leuven) for providing guidance on the implementation of the phylodynamic models; Joshua L. Cherry (National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health) for providing guidance with the subsampling strategies; and all authors, originating and submitting laboratories who have contributed genome data on GISAID (https://www.gisaid.org/) on which part of this research is based. The opinions expressed in this article are those of the authors and do not reflect the view of the National Institutes of Health, the Department of Health and Human Services, or the United States government. This study is co-funded by Fundação para a Ciência e Tecnologia and Agência de Investigação Clínica e Inovação Biomédica (234_596874175) on behalf of the Research 4 COVID-19 call. Some infrastructural resources used in this study come from the GenomePT project (POCI-01-0145-FEDER-022184), supported by COMPETE 2020 - Operational Programme for Competitiveness and Internationalisation (POCI), Lisboa Portugal Regional Operational Programme (Lisboa2020), Algarve Portugal Regional Operational Programme (CRESC Algarve2020), under the PORTUGAL 2020 Partnership Agreement, through the European Regional Development Fund (ERDF), and by Fundação para a Ciência e a Tecnologia (FCT).info:eu-repo/semantics/publishedVersio

    miR-34a and miR-125b Expression in HPV Infection and Cervical Cancer Development

    No full text
    We aimed to characterize miR-125b and miR-34a expression in 114 women with different cervical lesions: normal epithelium with (n = 20) and without (n = 29) HPV infection; LSIL (n = 28); HSIL (n = 29); and ICC (n = 8). miRNA expression analysis was performed by comparing the distinct groups with the reference group (women with normal epithelium without HPV). For miR-125b, we observed a twofold (2-ΔΔCt = 2.11; P = 0.038) increased expression among women with normal epithelium with HPV infection and a trend of downregulation in different cervical lesions including an 80% reduction (2-ΔΔCt = 0.21; P = 0.004) in ICC. Similarly, miR-34a expression analysis revealed an increased expression (2-ΔΔCt = 1.69; P = 0.049) among women with normal cervix and HPV infection, and despite no significant correlation with cervical lesions, its expression was increased by twofold (2-ΔΔCt = 2.08; P = 0.042) in ICC. Moreover, miR-125b levels were able to predict invasive cancers with 88% sensitivity and 69% specificity. Results showed that while miR-34a expression seems to be correlated with invasive cervical cancer, miR-125b expression is significantly changed within the different cervical lesions and their levels should be further investigated as possible predictive/prognostic biomarkers using a noninvasive approach

    Optimization and Clinical Evaluation of a Multi-Target Loop-Mediated Isothermal Amplification Assay for the Detection of SARS-CoV-2 in Nasopharyngeal Samples

    No full text
    SARS-CoV-2 is the coronavirus responsible for COVID-19, which has spread worldwide, affecting more than 200 countries, infecting over 140 million people in one year. The gold standard to identify infected people is RT-qPCR, which is highly sensitive, but needs specialized equipment and trained personnel. The demand for these reagents has caused shortages in certain countries. Isothermal nucleic acid techniques, such as loop-mediated isothermal amplification (LAMP) have emerged as an alternative or as a complement to RT-qPCR. In this study, we developed and evaluated a multi-target RT-LAMP for the detection of SARS-CoV-2. The method was evaluated against an RT-qPCR in 152 clinical nasopharyngeal swab samples. The results obtained indicated that both assays presented a “good concordance” (Cohen’s k of 0.69), the RT-LAMP was highly specific (99%) but had lower sensitivity compared to the gold standard (63.3%). The calculated low sensitivity was associated with samples with very low viral load (RT-qPCR Cq values higher than 35) which may be associated with non-infectious individuals. If an internal Cq threshold below 35 was set, the sensitivity and Cohen’s k increased to 90.9% and 0.92, respectively. The interpretation of the Cohen’s k for this was “very good concordance”. The RT-LAMP is an attractive approach for frequent individual testing in decentralized setups

    Cytomegalovirus Infection in Patients Who Underwent Allogeneic Hematopoietic Stem Cell Transplantation in Portugal: A Five-Year Retrospective Review

    Get PDF
    AbstractCytomegalovirus (CMV) infection is 1 of the leading causes of morbidity and mortality after allogeneic hematopoietic stem cell transplantation (aHSCT), mainly within the first 100 days after transplantation. We aimed to characterize CMV infection in a cohort of 305 patients with different malignancies undergoing aHSCT at the Portuguese Institute of Oncology of Porto between January 2008 and December 2012. In total, 184 patients (60.3%) developed CMV infection, mainly viral reactivations rather than primary infections (96.2% versus 3.8%, respectively). The majority of patients (166 of 184) developed CMV infection ≤100 days after transplantation, with median time to infection of 29 days (range, 0 to 1285) and median duration of infection of 10 days (range, 2 to 372). Multivariate analysis revealed that CMV infection was increased in donor (D)-/recipient (R)+ and D+/R+ (odds ratio [OR], 10.5; 95% confidence interval [CI], 4.35 to 25.4; P < .001) and in patients with mismatched or unrelated donors (OR, 2.54; 95% CI, 1.34 to 4.80; P = .004). Cox regression model showed that the risk of death was significantly increased in patients >38 years old (OR, 1.89; 95% CI, 1.14 to 3.12; P = .0137), who underwent transplantation with peripheral blood (OR, 3.02; 95% CI, 1.33 to 6.86; P = .008), with mismatched or unrelated donor (OR, 2.16; 95% CI, 1.48 to 3.13; P < .001), and who developed CMV infection (OR, 1.76; 95% CI, 1.07 to 2.90; P = .025). Moreover, patients who developed CMV infection had a significantly reduced median post-transplantation survival (16 versus 36 months; P = .002)

    Impact of high‐risk human papillomavirus genotyping incervicaldiseaseintheNorthernregionofPortugal:real‐worlddata from regional cervical cancer screening program

    No full text
    Cervical cancer prevention is based on primary prevention with vaccines againstHuman Papillomavirus (HPV) and secondary prevention by screening with High‐Risk‐HPV (Hr‐HPV) detection. Since 2017, cervical cancer screening in women aged25−60 years has been performed in Portugal using Hr‐HPV detection, followed bycytology in Hr‐HPV‐positive cases. Herein we report the prevalence of Hr‐HPVgenotypes and cytological abnormalities among 462 401 women (mean age:43.73 ± 10.79; median age: 45; range: 24−66 years) that participated in the RegionalCervical Cancer Screening Program of the Northern Region of Portugal, performedbetween August 2016 and December 2021. Overall, we describe a prevalence rateof 12.50% for Hr‐HPV varying from 20.76% at age 25% to 8.32% at age 64. The fivemost common Hr‐HPV genotypes identified were HPV‐68 (16.09%), HPV‐31(15.30%), HPV‐51 (12.96%), HPV‐16 (11.06%), and HPV‐39 (11.01%). Theprevalence of Hr‐HPV included in the nonavalent vaccine (HPV‐9valent) was55.00% ranging from 47.78% to 59.18% across different age groups.info:eu-repo/semantics/publishedVersio
    corecore