198 research outputs found

    Unveiling the environment surrounding LMXB SAX J1808.4-3658

    Full text link
    Low-mass X-ray binaries (LMXBs) are a natural workbench to study accretion disk phenomena and optimal background sources to measure elemental abundances in the Interstellar medium (ISM). In high-resolution XMM-Newton spectra, the LMXB SAX J1808.4-3658 showed in the past a neon column density significantly higher than expected given its small distance, presumably due to additional absorption from a neon-rich circumstellar medium (CSM). It is possible to detect intrinsic absorption from the CSM by evidence of Keplerian motions or outflows. For this purpose, we use a recent, deep (100 ks long), high-resolution Chandra/LETGS spectrum of SAX J1808.4-3658 in combination with archival data. We estimated the column densities of the different absorbers through the study of their absorption lines. We used both empirical and physical models involving photo- and collisional-ionization in order to determine the nature of the absorbers. The abundances of the cold interstellar gas match the solar values as expected given the proximity of the X-ray source. For the first time in this source, we detected neon and oxygen blueshifted absorption lines that can be well modeled with outflowing photoionized gas. The wind is neon rich (Ne/O>3) and may originate from processed, ionized gas near the accretion disk or its corona. The kinematics (v=500-1000 km/s) are indeed similar to those seen in other accretion disks. We also discovered a system of emission lines with very high Doppler velocities (v~24000 km/s) originating presumably closer to the compact object. Additional observations and UV coverage are needed to accurately determine the wind abundances and its ionization structure.Comment: 12 pages, 10 figures, accepted for publication on A&

    Discovery of an eccentric 30 days period in the supergiant X-ray binary SAX J1818.6-1703 with INTEGRAL

    Full text link
    SAX J1818.6-1703 is a flaring transient X-ray source serendipitously discovered by BeppoSAX in 1998 during an observation of the Galactic centre. The source was identified as a High-Mass X-ray Binary with an OB SuperGiant companion. Displaying short and bright flares and an unusually very-low quiescent level implying intensity dynamical range as large as 1e3-4, the source was classified as a Supergiant Fast X-ray Transient. The mechanism triggering the different temporal behaviour observed between the classical SGXBs and the recently discovered class of SFXTs is still debated. The discovery of long orbits (>15 d) should help to discriminate between emission models and bring constraints. We analysed archival INTEGRAL data on SAX J1818.6-1703. We built short- and long-term light curves and performed timing analysis in order to study the temporal behaviour of SAX J1818.6-1703 on different time scales. INTEGRAL revealed an unusually long orbital period of 30.0+/-0.2 d and an elapsed accretion phase of ~6 d in the transient SGXB SAX J1818.6-1703. This implies an elliptical orbit and constraints the possible supergiant spectral type between B0.5-1I with eccentricities e~0.3-0.4 (for average fundamental parameters of supergiant stars). During the accretion phase, the source behaved like classical SGXBs. The huge variations of the observed X-ray flux can be explained through accretion of macro-clumps formed within the stellar wind. Our analysis strengthens the model which predicts that SFXTs behave as SGXBs but with different orbital parameters, thus different temporal behaviour.Comment: 4 pages, 3 figures, A&A Letter in press (subm. 17/10/2008 - accept. 15/11/2008

    ROSSI X-RAY TIMING EXPLORER AND BeppoSAX OBSERVATIONS OF THE TRANSIENT X-RAY PULSAR XTE J1859+083

    Get PDF
    We present observations of the 9.8 s X-ray pulsar XTE J1859+083 made with the All Sky Monitor (ASM) and Proportional Counter Array (PCA) on board the Rossi X-ray Timing Explorer, and the Wide Field Camera (WFC) on board BeppoSAX. The ASM data cover a 12 year time interval and show that an extended outburst occurred between approximately MJD 50,250 and 50,460 (1996 June 16 to 1997 January 12). The ASM data excluding this outburst interval suggest a possible modulation with a period of 60.65 ± 0.08 days. Eighteen sets of PCA observations were obtained over an approximately one month interval in 1999. The flux variability measured with the PCA appears consistent with the possible period found with the ASM. The PCA measurements of the pulse period showed it to decrease nonmonotonically and then to increase significantly. Doppler shifts due to orbital motion rather than accretion torques appear to be better able to explain the pulse period changes. Observations with the WFC during the extended outburst give a position that is consistent with a previously determined PCA error box, but which has a significantly smaller error. The transient nature of XTE J1859+083 and the length of its pulse period are consistent with it being a Be/neutron star binary. The possible 60.65 day orbital period would be of the expected length for a Be star system with a 9.8 s pulse period

    Misalignment of the microquasar V4641 Sgr (SAX J1819.3--2525)

    Full text link
    In the microquasar V4641 Sgr the spin of the black hole is thought to be misaligned with the binary orbital axis. The accretion disc aligns with the black hole spin by the Lense-Thirring effect near to the black hole and further out becomes aligned with the binary orbital axis. The inclination of the radio jets and the FeKαK\alpha line profile have both been used to determine the inclination of the inner accretion disc but the measurements are inconsistent. Using a steady state analytical warped disc model for V4641 Sgr we find that the inner disc region is flat and aligned with the black hole up to about 900Rg900 R_{\rm g}. Thus if both the radio jet and fluorescent emission originates in the same inner region then the measurements of the inner disc inclination should be the same.Comment: Accepted for publication in MNRA

    Catalogue of high-mass X-ray binaries in the Galaxy (4th4^{th} edition)

    Get PDF
    We present a new edition of the catalogue of high-mass X-ray binaries in the Galaxy. The catalogue contains source name(s), coordinates, finding chart, X-ray luminosity, system parameters, and stellar parameters of the components and other characteristic properties of 114 high-mass X-ray binaries, together with a comprehensive selection of the relevant literature. The aim of this catalogue is to provide the reader with some basic information on the X-ray sources and their counterparts in other wavelength ranges (Îł\gamma-rays, UV, optical, IR, radio). About 60% of the high-mass X-ray binary candidates are known or suspected Be/X-ray binaries, while 32% are supergiant/X-ray binaries. Some sources, however, are only tentatively identified as high-mass X-ray binaries on the basis of their X-ray properties similar to the known high-mass X-ray binaries. Further identification in other wavelength bands is needed to finally determine the nature of these sources. In cases where there is some doubt about the high-mass nature of the X-ray binary this is mentioned. Literature published before 1 October 2005 has, as far as possible, been taken into account.Comment: 25 pages, table include

    INTEGRAL high energy detection of the transient IGR J11321-5311

    Full text link
    Context: The transient hard X-ray source IGR J11321-5311 was discovered by INTEGRAL on June 2005, during observations of the Crux spiral arm. To date, this is the only detection of the source to be reported by any X/gamma-ray mission. Aims: To characterize the behaviour and hence the nature of the source through temporal and spectral IBIS analysis. Methods: Detailed spectral and temporal analysis has been performed using standard INTEGRAL software OSA v.5.1. Results: To date, IGR J11321-5311 has been detected only once. It was active for about 3.5 hours, a short and bright flare lasting about 1.5 hours is evident in the IBIS light curve. It reached a peak flux of about 80 mCrab or 2.2x10E-9 erg cmE-2 sE-1 (20--300 keV),corresponding to a peak luminosity of 1.1x10E37 erg sE-1 (assuming a distance of 6.5 kpc). During the outburst, the source was detected with a significance of 18 sigma (20--300 keV) and 8 sigma (100--300 keV). The spectrum of the total outburst activity (17--300 keV) is best fitted by the sum of a power law (Gamma=0.55+/-0.18) plus a black body (kT=1.0{+0.2}_{-0.3} keV), with no evidence for a break up to 300 keV. A spectral analysis at Science Window level revealed an evident hardening of the spectrum through the outburst. The IBIS data were searched for pulsations with no positive result. Conclusions: The X-ray spectral shape and the flaring behaviour favour the hypothesis that IGR J11321-5311 is an Anomalous X-ray Pulsar, though a different nature can not be firmly rejected at the present stage.Comment: accepted for publication in A&A letter, 4 pages, 6 figure

    IGR J17544-2619: A new supergiant fast X-ray transient revealed by optical/infrared observations

    Get PDF
    One of the most recent discoveries of the INTEGRAL observatory is the existence of a previously unknown population of X-ray sources in the inner arms of the Galaxy. IGR J17544-2619, IGR J16465-4507 and XTE J1739-302 are among these sources. Although the nature of these systems is still unexplained, the investigations of the optical/NIR counterparts of the two last sources, combined with high energy data, have provided evidence of them being highly absorbed high mass X-ray binaries with blue supergiant secondaries and displaying fast X-ray transient behaviour. In this work we present our optical/NIR observations of IGR J17544-2619, aimed at identifying and characterizing its counterpart. We show that the source is a high mass X-ray binary at a distance of 2-4 kpc with a strongly absorbed O9Ib secondary, and discuss the nature of the system.Comment: 7 pages, 4 figures. Accepted for publication in A&

    Unveiling the nature of six HMXBs through IR spectroscopy

    Get PDF
    The International Gamma-Ray Astrophyiscs Laboratory (INTEGRAL) is discovering a large number of new hard X-ray sources, many of them being HMXBs. The identification and spectral characterization of their optical/infrared counterparts is a necessary step to undertake detailed study of these systems. In particular, the determination of the spectral type is crucial in the case of the new class of Supergiant Fast X-ray Transients (SFXTs), which show X-ray properties common to other objects. We used the ESO/NTT SofI spectrograph to observe proposed IR counterparts to HMXBs, obtaining Ks medium resolution spectra (R = 1320) with a S/N >= 100. We classified them through comparison with published atlases. We were able to spectrally classify the six sources. This allowed us to ascribe one of them to the new class of SFXTs and confirm the membership of two sources to this class. We confirmed the spectral classification, derived from optical spectroscopy, of a known system, 4U 1907-09, showing for the first time its infrared spectrum. The spectral classification was also used to estimate the distance of the sources. We compared the extinction as derived from X-ray data with effective interstellar extinction obtained from our data, discussing the absorption component due to the circumstellar environment, which we observed in four systems; in particular, intrinsic absorption seems to emerge as a typical feature of the entire class of SFXTs.Comment: 8 pages, 6 figures, 3 tables, accepted for publication in Astronomy & Astrophysic
    • …
    corecore