3,556 research outputs found
A SON Solution for Sleeping Cell Detection Using Low-Dimensional Embedding of MDT Measurements
Automatic detection of cells which are in outage has been identified as one of the key use cases for Self Organizing Networks (SON) for emerging and future generations of cellular systems. A special case of cell outage, referred to as Sleeping Cell (SC) remains particularly challenging to detect in state of the art SON because in this case cell goes into outage or may perform poorly without triggering an alarm for Operation and Maintenance (O&M) entity. Consequently, no SON compensation function can be launched unless SC situation is detected via drive tests or through complaints registered by the affected customers. In this paper, we present a novel solution to address this problem that makes use of minimization of drive test (MDT) measurements recently standardized by 3GPP and NGMN. To overcome the processing complexity challenge, the MDT measurements are projected to a low-dimensional space using multidimensional scaling method. Then we apply state of the art k-nearest neighbor and local outlier factor based anomaly detection models together with pre-processed MDT measurements to profile the network behaviour and to detect SC. Our numerical results show that our proposed solution can automate the SC detection process with 93 accuracy
Recommended from our members
Design Analysis and Performance Characterization of a Novel Bone Conduction Hearing Aid
Automatic Segmentation of Broadcast News Audio using Self Similarity Matrix
Generally audio news broadcast on radio is com- posed of music, commercials,
news from correspondents and recorded statements in addition to the actual news
read by the newsreader. When news transcripts are available, automatic
segmentation of audio news broadcast to time align the audio with the text
transcription to build frugal speech corpora is essential. We address the
problem of identifying segmentation in the audio news broadcast corresponding
to the news read by the newsreader so that they can be mapped to the text
transcripts. The existing techniques produce sub-optimal solutions when used to
extract newsreader read segments. In this paper, we propose a new technique
which is able to identify the acoustic change points reliably using an acoustic
Self Similarity Matrix (SSM). We describe the two pass technique in detail and
verify its performance on real audio news broadcast of All India Radio for
different languages.Comment: 4 pages, 5 image
Significant barriers to ICT adoption in the public sector in the Least Developed Countries (LDCs): A case study of Bangladesh
Adoption of ICT in the public sector of the least developed countries (LDCs) is still far from satisfactory, despite many initiatives at international and national levels. In addition to perceived barriers associated with LDCs, such as lack of political will and commitment, leadership, infrastructure, human capacity etc, this empirical study has found new evidence of a deep rooted underlying cause, a lack of proper knowledge and awareness as the major barrier to ICT adoption, in the context of Bangladesh. The study also attempts to uncover the relative effect of different barriers and their inter relationships based on focus group data which gives important direction for further study
Leveraging intelligence from network CDR data for interference aware energy consumption minimization
Cell densification is being perceived as the panacea for the imminent capacity crunch. However, high aggregated energy consumption and increased inter-cell interference (ICI) caused by densification, remain the two long-standing problems. We propose a novel network orchestration solution for simultaneously minimizing energy consumption and ICI in ultra-dense 5G networks. The proposed solution builds on a big data analysis of over 10 million CDRs from a real network that shows there exists strong spatio-temporal predictability in real network traffic patterns. Leveraging this we develop a novel scheme to pro-actively schedule radio resources and small cell sleep cycles yielding substantial energy savings and reduced ICI, without compromising the users QoS. This scheme is derived by formulating a joint Energy Consumption and ICI minimization problem and solving it through a combination of linear binary integer programming, and progressive analysis based heuristic algorithm. Evaluations using: 1) a HetNet deployment designed for Milan city where big data analytics are used on real CDRs data from the Telecom Italia network to model traffic patterns, 2) NS-3 based Monte-Carlo simulations with synthetic Poisson traffic show that, compared to full frequency reuse and always on approach, in best case, proposed scheme can reduce energy consumption in HetNets to 1/8th while providing same or better Qo
- …