10 research outputs found

    Producing graphite with desired properties

    Get PDF
    Isotropic or anisotropic graphite is synthesized with precise control of particle size, distribution, and shape. The isotropic graphites are nearly perfectly isotropic, with thermal expansion coefficients two or three times those of ordinary graphites. The anisotropic graphites approach the anisotropy of pyrolytic graphite

    Carbide coated fibers in graphite-aluminum composites

    Get PDF
    The NASA-supported program at the Los Alamos Scientific Laboratory (LASL) to develop carbon fiber-aluminum matrix composites is described. Chemical vapor deposition (CVD) was used to uniformly deposit thin, smooth, continuous coats of TiC on the fibers of graphite tows. Wet chemical coating of fibers, followed by high-temperature treatment, was also used, but showed little promise as an alternative coating method. Strength measurements on CVD coated fiber tows showed that thin carbide coats can add to fiber strength. The ability of aluminum alloys to wet TiC was successfully demonstrated using TiC-coated graphite surfaces. Pressure-infiltration of TiC- and ZrC-coated fiber tows with aluminum alloys was only partially successful. Experiments were performed to evaluate the effectiveness of carbide coats on carbon as barriers to prevent reaction between alluminum alloys and carbon. Initial results indicate that composites of aluminum and carbide-coated graphite are stable for long periods of time at temperatures near the alloy solidus

    Carbide coated fibers in graphites-aluminum composites

    Get PDF
    Research activities are described for a NASA-supported program at the Los Alamos Scientific Laboratory to develop graphite fiber-aluminum matrix composites. A chemical vapor deposition apparatus was constructed for continuously coating graphite fibers with TiC. As much as 150 meters of continuously coated fibers were produced. Deposition temperatures were varied from 1365 K to about 1750 K, and deposition time from 6 to 150 seconds. The 6 sec deposition time corresponded to a fiber feed rate of 2.54 m/min through the coater. Thin, uniform, adherent TiC coats, with thicknesses up to approximately 0.1 micrometer were produced on the individual fibers of Thornel 50 graphite yarns without affecting fiber strength. Although coat properties were fairly uniform throughout a given batch, more work is needed to improve the batch-to-batch reproducibility. Samples of TiC-coated Thornel 50 fibers were infiltrated with an aluminum alloy and hot-pressed in vacuum to produce small composite bars for flexure testing. Strengths as high as 90% of the rule-of-mixtures strength were achieved. Results of the examination of the fracture surfaces indicate that the bonding between the aluminum and the TiC-coated fibers is better than that achieved in a similar, commercially infiltrated material made with fibers having no observable surface coats. Several samples of Al-infiltrated, TiC-coated Thornel 50 graphite yarns, together with samples of the commercially infiltrated, uncoated fibers, were heated for 100 hours at temperatures near the alloy solidus. The TiC-coated samples appear to undergo less reaction than do the uncoated samples. Photomicrographs are shown

    Carbide coated fibers in graphite-aluminum composites

    Get PDF
    The study of protective-coupling layers of refractory metal carbides on the graphite fibers prior to their incorporation into composites is presented. Such layers should be directly wettable by liquid aluminum and should act as diffusion barriers to prevent the formation of aluminum carbide. Chemical vapor deposition was used to uniformly deposit thin, smooth, continuous coats of ZrC on the carbon fibers of tows derived from both rayon and polyacrylonitrile. A wet chemical coating of the fibers, followed by high-temperature treatment, was used, and showed promise as an alternative coating method. Experiments were performed to demonstrate the ability of aluminum alloys to wet carbide surfaces. Titanium carbide, zirconium carbide and carbide-coated graphite surfaces were successfully wetted. Results indicate that initial attempts to wet surfaces of ZrC-coated carbon fibers appear successful

    ESTIMATION OF OPTIMUM BINDER CONCENTRATION FOR MOLDED CARBONS.

    No full text

    Improvement in oxidation resistance of the leading edge thermal protection for a space shuttle

    No full text

    Regional Moment Tensor Review: An Example from the 2 European–Mediterranean Region

    No full text
    The seismic moment tensor is the complete mathematical representation of the movement on a fault 10 during an earthquake, comprising of the couples of forces that produced it, the description of the fault 11 geometry, and its size by means of the scalar seismic moment M0. 12 The computation of seismic moment tensor has become a widely diffused activity because of the 13 relevance of this kind of data in seismotectonic and geodynamic studies and, in more recent times, 14 because it allows obtaining rapid information about a seismic event immediately after its occurrence. This 15 progress has been possible with the advent of modern standardized instruments since the early 1960s, 16 above all of the very broadband seismographic stations that started to record in the late 1970s. Further- 17 more, time after time, the easier availability of digital data impressed a strong incentive to improve the 18 procedures of source parameter computation.Unpublished1-154IT. Banche datirestricte
    corecore