28 research outputs found

    EFFECTS FROM FILTRATION, CAPPING AGENTS, AND PRESENCE/ABSENCE OF FOOD ON THE TOXICITY OF SILVER NANOPARTICLES TO \u3ci\u3eDAPHNIA MAGNA\u3c/i\u3e

    Get PDF
    Relatively little is known about the behavior and toxicity of nanoparticles in the environment. Objectives of work presented here include establishing the toxicity of a variety of silver nanoparticles (AgNPs) to Daphnia magna neonates, assessing the applicability of a commonly used bioassay for testing AgNPs, and determining the advantages and disadvantages of multiple characterization techniques for AgNPs in simple aquatic systems. Daphnia magna were exposed to a silver nitrate solution and AgNPs suspensions including commercially available AgNPs (uncoated and coated), and laboratory-synthesized AgNPs (coated with coffee or citrate). The nanoparticle suspensions were analyzed for silver concentration (microwave acid digestions), size (dynamic light scattering and electron microscopy), shape (electron microscopy), surface charge (zeta potentiometer), and chemical speciation (X-ray absorption spectroscopy, X-ray diffraction). Toxicities of filtered (100 nm) versus unfiltered suspensions were compared. Additionally, effects from addition of food were examined. Stock suspensions were prepared by adding AgNPs to moderately hard reconstituted water, which were then diluted and used straight or after filtration with 100-nm filters. All nanoparticle exposure suspensions, at every time interval, were digested via microwave digester and analyzed by inductively coupled argon plasma–optical emission spectroscopy or graphite furnace– atomic absorption spectroscopy. Dose–response curves were generated and median lethal concentration (LC50) values calculated. The LC50 values for the unfiltered particles were (in ÎŒ/L): 1.1±0.1-AgNO3; 1.0±0.1-coffee coated; 1.1±0.2-citrate coated; 16.7±2.4 Sigma Aldrich Ag-nanoparticles (SA) uncoated; 31.5±8.1 SA coated. LC50 values for the filtered particles were (in ÎŒ/L): 0.7±0.1- AgNO3; 1.4±0.1-SA uncoated; 4.4±1.4-SA coated. The LC50 resulting from the addition of food was 176.4±25.5-SA coated. Recommendations presented in this study include AgNP handling methods, effects from sample preparation, and advantages/ disadvantages of different nanoparticle characterization techniques

    Arsenic contamination of natural waters in San Juan and La Pampa, Argentina

    Get PDF
    Arsenic (As) speciation in surface and groundwater from two provinces in Argentina (San Juan and La Pampa) was investigated using solid phase extraction (SPE) cartridge methodology with comparison to total arsenic concentrations. A third province, RĂ­o Negro, was used as a control to the study. Strong cation exchange (SCX) and strong anion exchange (SAX) cartridges were utilised in series for the separation and preservation of arsenite (AsIII), arsenate (AsV), monomethylarsonic acid (MAV) and dimethylarsinic acid (DMAV). Samples were collected from a range of water outlets (rivers/streams, wells, untreated domestic taps, well water treatment works) to assess the relationship between total arsenic and arsenic species, water type and water parameters (pH, conductivity and total dissolved solids, TDS). Analysis of the waters for arsenic (total and species) was performed by inductively coupled plasma mass spectrometry (ICP-MS) in collision cell mode. Total arsenic concentrations in the surface and groundwater from Encon and the San JosĂ© de JĂĄchal region of San Juan (north-west Argentina within the Cuyo region) ranged from 9 to 357 ÎŒg l−1 As. Groundwater from Eduardo Castex (EC) and Ingeniero Luiggi (LU) in La Pampa (central Argentina within the Chaco-Pampean Plain) ranged from 3 to 1326 ÎŒg l−1 As. The pH range for the provinces of San Juan (7.2–9.7) and La Pampa (7.0–9.9) are in agreement with other published literature. The highest total arsenic concentrations were found in La Pampa well waters (both rural farms and pre-treated urban sources), particularly where there was high pH (typically > 8.2), conductivity (>2,600 ÎŒS cm−1) and TDS (>1,400 mg l−1). Reverse osmosis (RO) treatment of well waters in La Pampa for domestic drinking water in EC and LU significantly reduced total arsenic concentrations from a range of 216–224 ÎŒg l−1 As to 0.3–0.8 ÎŒg l−1 As. Arsenic species for both provinces were predominantly AsIII and AsV. AsIII and AsV concentrations in San Juan ranged from 4–138 ÎŒg l−1 to <0.02–22 ÎŒg l−1 for surface waters (in the San JosĂ© de JĂĄchal region) and 23–346 ÎŒg l−1 and 0.04–76 ÎŒg l−1 for groundwater, respectively. This translates to a relative AsIII abundance of 69–100% of the total arsenic in surface waters and 32–100% in groundwater. This is unexpected because it is typically thought that in oxidising conditions (surface waters), the dominant arsenic species is AsV. However, data from the SPE methodology suggests that AsIII is the prevalent species in San Juan, indicating a greater influence from reductive processes. La Pampa groundwater had AsIII and AsV concentrations of 5–1,332 ÎŒg l−1 and 0.09–592 ÎŒg l−1 for EC and 32–242 ÎŒg l−1 and 30–277 ÎŒg l−1 As for LU, respectively. Detectable levels of MAV were reported in both provinces up to a concentration of 79 ÎŒg l−1 (equating to up to 33% of the total arsenic). Previously published literature has focused primarily on the inorganic arsenic species, however this study highlights the potentially significant concentrations of organoarsenicals present in natural waters. The potential for separating and preserving individual arsenic species in the field to avoid transformation during transport to the laboratory, enabling an accurate assessment of in situ arsenic speciation in water supplies is discussed

    Assembly of protein-based hollow spheres encapsulating a therapeutic factor

    Get PDF
    Neurotrophins, as important regulators of neural development, function and survival, have a therapeutic potential to repair damaged neurons. However, a controlled delivery of therapeutic molecules to injured tissue remains one of the greatest challenges facing the translation of novel drug therapeutics field. This study presents the development of an innovative protein-protein delivery technology of nerve growth factor (NGF) by an electrostatically assembled protein-based (collagen) reservoir system that can be directly injected into the injury site and provide long term release of the therapeutic. A protein-based biomimetic hollow reservoir system was fabricated using a template method. The capability of neurotrophins to localise in these reservoir systems was confirmed by confocal images of fluorescently labelled collagen and NGF. In addition, high loading efficiency of the reservoir system was proven using ELISA. By comparing release profile from microspheres with varying crosslinking, highly cross-linked collagen spheres were chosen as they have the slowest release rate. Finally, biological activity of released NGF was assessed using rat pheochromocytoma (PC12) cell line and primary rat dorsal root ganglion (DRG) cell bioassay where cell treatment with NGF-loaded reservoirs induced significant neuronal outgrowth, similar to that seen in NGF treated controls. Data presented here highlights the potential of a high capacity reservoir-growth factor technology as a promising therapeutic treatment for neuroregenerative applications and other neurodegenerative diseases.Funding Information Funding for this work was provided by Covidien LLC and the Industrial Development Agency of Ireland.peer-reviewe

    Exploring the Mechanisms of Selectivity for Environmentally Significant Oxo-Anion Removal during Water Treatment: A Review of Common Competing Oxo-Anions and Tools for Quantifying Selective Adsorption

    No full text
    Development of novel adsorbents often neglects the competitive adsorption between co-occurring oxo-anions, overestimating realistic pollutant removal potentials, and overlooking the need to improve selectivity of materials. This critical review focuses on adsorptive competition between commonly cooccurring oxo-anions in water and mechanistic approaches for the design and development of selective adsorbents. Six “target” oxo-anion pollutants (arsenate, arsenite, selenate, selenite, chromate, and perchlorate) were selected for study. Five “competing” co-occurring oxo-anions (phosphate, sulfate, bicarbonate, silicate, and nitrate) were selected due to their potential to compete with target oxo-anions for sorption sites resulting in decreased removal of the target oxo-anions. First, a comprehensive review of competition between target and competitor oxo-anions to sorb on commonly used, nonselective, metal (hydr)oxide materials is presented, and the strength of competition between each target and competitive oxo-anion pair is classified. This is followed by a critical discussion of the different equations and models used to quantify selectivity. Next, four mechanisms that have been successfully utilized in the development of selective adsorbents are reviewed: variation in surface complexation, Lewis acid/base hardness, steric hindrance, and electrostatic interactions. For each mechanism, the oxo-anions, both target and competitors, are ranked in terms of adsorptive attraction and technologies that exploit this mechanism are reviewed. Third, given the significant effort to evaluate these systems empirically, the potential to use computational quantum techniques, such as density functional theory (DFT), for modeling and prediction is explored. Finally, areas within the field of selective adsorption requiring further research are detailed with guidance on priorities for screening and defining selective adsorbents

    Effects of chemical amendments on the lability and speciation of metals in anaerobically digested biosolids

    No full text
    The interaction of inorganic contaminants present in biosolids with iron, aluminum, and manganese oxy/hydroxides has been advocated as a key mechanism limiting their bioavailability. In this study, we investigated whether this is indeed the case, and further, whether it can be exploited to produce optimized biosolids products through the addition of chemical additives during sewage sludge processing. Experiments were conducted to investigate whether the addition of iron- and aluminum-based amendments (at 5 different rates) during the anaerobic digestion phase of wastewater treatment can effectively change the speciation or lability of contaminant metals (copper, zinc and cadmium) in biosolids destined for use in agriculture. The performance of the bioreactors was monitored throughout and the speciation and lability were determined in both fresh and 3-month aged biosolids using X-ray absorption spectroscopy (Cu, Zn) and isotopic dilution (65Cu, 65Zn, 109Cd). The tested amendments (FeCl3, Al2(SO4)3, and Al-rich water treatment residual) did not cause significant changes in metal speciation and were of limited use for reducing the lability of contaminant metals in good quality biosolids (suitable for use in agriculture), suggesting that high affinity binding sites were already in excess in these materials. However, the use of chemical amendments may offer advantages in terms of treatment process optimization and may also be beneficial when biosolids are used for contaminated site remediation.Erica Donner, Gianluca Brunetti, Bernie Zarcinas, Paul Harris, Ehsan Tavakkoli, Ravi Naidu and Enzo Lomb
    corecore