275 research outputs found

    Upper and Lower Bounds for Weak Backdoor Set Detection

    Full text link
    We obtain upper and lower bounds for running times of exponential time algorithms for the detection of weak backdoor sets of 3CNF formulas, considering various base classes. These results include (omitting polynomial factors), (i) a 4.54^k algorithm to detect whether there is a weak backdoor set of at most k variables into the class of Horn formulas; (ii) a 2.27^k algorithm to detect whether there is a weak backdoor set of at most k variables into the class of Krom formulas. These bounds improve an earlier known bound of 6^k. We also prove a 2^k lower bound for these problems, subject to the Strong Exponential Time Hypothesis.Comment: A short version will appear in the proceedings of the 16th International Conference on Theory and Applications of Satisfiability Testin

    On the Equivalence among Problems of Bounded Width

    Full text link
    In this paper, we introduce a methodology, called decomposition-based reductions, for showing the equivalence among various problems of bounded-width. First, we show that the following are equivalent for any α>0\alpha > 0: * SAT can be solved in O(2αtw)O^*(2^{\alpha \mathrm{tw}}) time, * 3-SAT can be solved in O(2αtw)O^*(2^{\alpha \mathrm{tw}}) time, * Max 2-SAT can be solved in O(2αtw)O^*(2^{\alpha \mathrm{tw}}) time, * Independent Set can be solved in O(2αtw)O^*(2^{\alpha \mathrm{tw}}) time, and * Independent Set can be solved in O(2αcw)O^*(2^{\alpha \mathrm{cw}}) time, where tw and cw are the tree-width and clique-width of the instance, respectively. Then, we introduce a new parameterized complexity class EPNL, which includes Set Cover and Directed Hamiltonicity, and show that SAT, 3-SAT, Max 2-SAT, and Independent Set parameterized by path-width are EPNL-complete. This implies that if one of these EPNL-complete problems can be solved in O(ck)O^*(c^k) time, then any problem in EPNL can be solved in O(ck)O^*(c^k) time.Comment: accepted to ESA 201

    Relating the Time Complexity of Optimization Problems in Light of the Exponential-Time Hypothesis

    Full text link
    Obtaining lower bounds for NP-hard problems has for a long time been an active area of research. Recent algebraic techniques introduced by Jonsson et al. (SODA 2013) show that the time complexity of the parameterized SAT(\cdot) problem correlates to the lattice of strong partial clones. With this ordering they isolated a relation RR such that SAT(RR) can be solved at least as fast as any other NP-hard SAT(\cdot) problem. In this paper we extend this method and show that such languages also exist for the max ones problem (MaxOnes(Γ\Gamma)) and the Boolean valued constraint satisfaction problem over finite-valued constraint languages (VCSP(Δ\Delta)). With the help of these languages we relate MaxOnes and VCSP to the exponential time hypothesis in several different ways.Comment: This is an extended version of Relating the Time Complexity of Optimization Problems in Light of the Exponential-Time Hypothesis, appearing in Proceedings of the 39th International Symposium on Mathematical Foundations of Computer Science MFCS 2014 Budapest, August 25-29, 201

    The parameterized complexity of some geometric problems in unbounded dimension

    Full text link
    We study the parameterized complexity of the following fundamental geometric problems with respect to the dimension dd: i) Given nn points in \Rd, compute their minimum enclosing cylinder. ii) Given two nn-point sets in \Rd, decide whether they can be separated by two hyperplanes. iii) Given a system of nn linear inequalities with dd variables, find a maximum-size feasible subsystem. We show that (the decision versions of) all these problems are W[1]-hard when parameterized by the dimension dd. %and hence not solvable in O(f(d)nc){O}(f(d)n^c) time, for any computable function ff and constant cc %(unless FPT=W[1]). Our reductions also give a nΩ(d)n^{\Omega(d)}-time lower bound (under the Exponential Time Hypothesis)

    On the Complexity of Hilbert Refutations for Partition

    Full text link
    Given a set of integers W, the Partition problem determines whether W can be divided into two disjoint subsets with equal sums. We model the Partition problem as a system of polynomial equations, and then investigate the complexity of a Hilbert's Nullstellensatz refutation, or certificate, that a given set of integers is not partitionable. We provide an explicit construction of a minimum-degree certificate, and then demonstrate that the Partition problem is equivalent to the determinant of a carefully constructed matrix called the partition matrix. In particular, we show that the determinant of the partition matrix is a polynomial that factors into an iteration over all possible partitions of W.Comment: Final versio

    A Full Characterization of Quantum Advice

    Get PDF
    We prove the following surprising result: given any quantum state rho on n qubits, there exists a local Hamiltonian H on poly(n) qubits (e.g., a sum of two-qubit interactions), such that any ground state of H can be used to simulate rho on all quantum circuits of fixed polynomial size. In terms of complexity classes, this implies that BQP/qpoly is contained in QMA/poly, which supersedes the previous result of Aaronson that BQP/qpoly is contained in PP/poly. Indeed, we can exactly characterize quantum advice, as equivalent in power to untrusted quantum advice combined with trusted classical advice. Proving our main result requires combining a large number of previous tools -- including a result of Alon et al. on learning of real-valued concept classes, a result of Aaronson on the learnability of quantum states, and a result of Aharonov and Regev on "QMA+ super-verifiers" -- and also creating some new ones. The main new tool is a so-called majority-certificates lemma, which is closely related to boosting in machine learning, and which seems likely to find independent applications. In its simplest version, this lemma says the following. Given any set S of Boolean functions on n variables, any function f in S can be expressed as the pointwise majority of m=O(n) functions f1,...,fm in S, such that each fi is the unique function in S compatible with O(log|S|) input/output constraints.Comment: We fixed two significant issues: 1. The definition of YQP machines needed to be changed to preserve our results. The revised definition is more natural and has the same intuitive interpretation. 2. We needed properties of Local Hamiltonian reductions going beyond those proved in previous works (whose results we'd misstated). We now prove the needed properties. See p. 6 for more on both point

    A PCP Characterization of AM

    Get PDF
    We introduce a 2-round stochastic constraint-satisfaction problem, and show that its approximation version is complete for (the promise version of) the complexity class AM. This gives a `PCP characterization' of AM analogous to the PCP Theorem for NP. Similar characterizations have been given for higher levels of the Polynomial Hierarchy, and for PSPACE; however, we suggest that the result for AM might be of particular significance for attempts to derandomize this class. To test this notion, we pose some `Randomized Optimization Hypotheses' related to our stochastic CSPs that (in light of our result) would imply collapse results for AM. Unfortunately, the hypotheses appear over-strong, and we present evidence against them. In the process we show that, if some language in NP is hard-on-average against circuits of size 2^{Omega(n)}, then there exist hard-on-average optimization problems of a particularly elegant form. All our proofs use a powerful form of PCPs known as Probabilistically Checkable Proofs of Proximity, and demonstrate their versatility. We also use known results on randomness-efficient soundness- and hardness-amplification. In particular, we make essential use of the Impagliazzo-Wigderson generator; our analysis relies on a recent Chernoff-type theorem for expander walks.Comment: 18 page

    Multidimensional Binary Vector Assignment problem: standard, structural and above guarantee parameterizations

    Full text link
    In this article we focus on the parameterized complexity of the Multidimensional Binary Vector Assignment problem (called \BVA). An input of this problem is defined by mm disjoint sets V1,V2,,VmV^1, V^2, \dots, V^m, each composed of nn binary vectors of size pp. An output is a set of nn disjoint mm-tuples of vectors, where each mm-tuple is obtained by picking one vector from each set ViV^i. To each mm-tuple we associate a pp dimensional vector by applying the bit-wise AND operation on the mm vectors of the tuple. The objective is to minimize the total number of zeros in these nn vectors. mBVA can be seen as a variant of multidimensional matching where hyperedges are implicitly locally encoded via labels attached to vertices, but was originally introduced in the context of integrated circuit manufacturing. We provide for this problem FPT algorithms and negative results (ETHETH-based results, WW[2]-hardness and a kernel lower bound) according to several parameters: the standard parameter kk i.e. the total number of zeros), as well as two parameters above some guaranteed values.Comment: 16 pages, 6 figure

    Spatially resolved spectroscopy of monolayer graphene on SiO2

    Full text link
    We have carried out scanning tunneling spectroscopy measurements on exfoliated monolayer graphene on SiO2_2 to probe the correlation between its electronic and structural properties. Maps of the local density of states are characterized by electron and hole puddles that arise due to long range intravalley scattering from intrinsic ripples in graphene and random charged impurities. At low energy, we observe short range intervalley scattering which we attribute to lattice defects. Our results demonstrate that the electronic properties of graphene are influenced by intrinsic ripples, defects and the underlying SiO2_2 substrate.Comment: 6 pages, 7 figures, extended versio

    Polynomial kernelization for removing induced claws and diamonds

    Full text link
    A graph is called (claw,diamond)-free if it contains neither a claw (a K1,3K_{1,3}) nor a diamond (a K4K_4 with an edge removed) as an induced subgraph. Equivalently, (claw,diamond)-free graphs can be characterized as line graphs of triangle-free graphs, or as linear dominoes, i.e., graphs in which every vertex is in at most two maximal cliques and every edge is in exactly one maximal clique. In this paper we consider the parameterized complexity of the (claw,diamond)-free Edge Deletion problem, where given a graph GG and a parameter kk, the question is whether one can remove at most kk edges from GG to obtain a (claw,diamond)-free graph. Our main result is that this problem admits a polynomial kernel. We complement this finding by proving that, even on instances with maximum degree 66, the problem is NP-complete and cannot be solved in time 2o(k)V(G)O(1)2^{o(k)}\cdot |V(G)|^{O(1)} unless the Exponential Time Hypothesis fai
    corecore