59 research outputs found

    Bone cancer induces a unique central sensitization through synaptic changes in a wide area of the spinal cord

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Chronic bone cancer pain is thought to be partly due to central sensitization. Although murine models of bone cancer pain revealed significant neurochemical changes in the spinal cord, it is not known whether this produces functional alterations in spinal sensory synaptic transmission. In this study, we examined excitatory synaptic responses evoked in substantia gelatinosa (SG, lamina II) neurons in spinal cord slices of adult mice bearing bone cancer, using whole-cell voltage-clamp recording techniques.</p> <p>Results</p> <p>Mice at 14 to 21 days after sarcoma implantation into the femur exhibited hyperalgesia to mechanical stimuli applied to the skin of the ipsilateral hind paw, as well as showing spontaneous and movement evoked pain-related behaviors. SG neurons exhibited spontaneous excitatory postsynaptic currents (EPSCs). The amplitudes of spontaneous EPSCs were significantly larger in cancer-bearing than control mice without any changes in passive membrane properties of SG neurons. In the presence of TTX, the amplitude of miniature EPSCs in SG neurons was increased in cancer-bearing mice and this was observed for cells sampled across a wide range of lumbar segmental levels. Alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor- and <it>N</it>-methyl-<it>D</it>-aspartate (NMDA) receptor-mediated EPSCs evoked by focal stimulation were also enhanced in cancer-bearing mice. Dorsal root stimulation elicited mono- and/or polysynaptic EPSCs that were caused by the activation of Aδ and/or C afferent fibers in SG neurons from both groups of animals. The number of cells receiving monosynaptic inputs from Aδ and C fibers was not different between the two groups. However, the amplitude of the monosynaptic C fiber-evoked EPSCs and the number of SG neurons receiving polysynaptic inputs from Aδ and C fibers were increased in cancer-bearing mice.</p> <p>Conclusions</p> <p>These results show that spinal synaptic transmission mediated through Aδ and C fibers is enhanced in the SG across a wide area of lumbar levels following sarcoma implantation in the femur. This widespread spinal sensitization may be one of the underlying mechanisms for the development of chronic bone cancer pain.</p

    Systemic dexmedetomidine augments inhibitory synaptic transmission in the superficial dorsal horn through activation of descending noradrenergic control:An in vivo patch-clamp analysis of analgesic mechanisms

    Get PDF
    α(2)-adrenoceptors are widely distributed throughout the central nervous system (CNS) and the systemic administration of α(2)-agonists such as dexmedetomidine produces clinically useful, centrally-mediated sedation and analgesia; however, these same actions also limit the utility of these agents (ie unwanted sedative actions). Despite a wealth of data on cellular and synaptic actions of α(2)-agonists in vitro, it is not known which neuronal circuits are modulated in vivo to produce the analgesic effect. To address this issue, we made in vivo recordings of membrane currents and synaptic activities in superficial spinal dorsal horn neurons and examined their responses to systemic dexmedetomidine. We found that dexmedetomidine at doses that produce analgesia (<10 μg/kg) enhanced inhibitory postsynaptic transmission within the superficial dorsal horn without altering excitatory synaptic transmission or evoking direct postsynaptic membrane currents. In contrast, higher doses of dexmedetomidine (>10 μg/kg) induced outward currents by a direct postsynaptic action. The dexmedetomidine-mediated inhibitory postsynaptic current (IPSC) facilitation was not mimicked by spinal application of dexmedetomidine and was absent in spinalized rats, suggesting it acts at a supraspinal site. Further it was inhibited by spinal application of the α(1)-antagonist prazosin. In the brain stem, low doses of systemic dexmedetomidine produced an excitation of locus coeruleus neurons. These results suggest that systemic α(2)-adrenoceptor stimulation may facilitate inhibitory synaptic responses in the superficial dorsal horn to produce analgesia mediated by activation of the pontospinal noradrenergic inhibitory system. This novel mechanism may provide new targets for intervention perhaps allowing analgesic actions to be dissociated from excessive sedation

    Splicing misregulation of SCN5A contributes to cardiac-conduction delay and heart arrhythmia in myotonic dystrophy

    Get PDF
    Myotonic dystrophy (DM) is caused by the expression of mutant RNAs containing expanded CUG repeats that sequester muscleblind-like (MBNL) proteins, leading to alternative splicing changes. Cardiac alterations, characterized by conduction delays and arrhythmia, are the second most common cause of death in DM. Using RNA sequencing, here we identify novel splicing alterations in DM heart samples, including a switch from adult exon 6B towards fetal exon 6A in the cardiac sodium channel, SCN5A. We find that MBNL1 regulates alternative splicing of SCN5A mRNA and that the splicing variant of SCN5A produced in DM presents a reduced excitability compared with the control adult isoform. Importantly, reproducing splicing alteration of Scn5a in mice is sufficient to promote heart arrhythmia and cardiac-conduction delay, two predominant features of myotonic dystrophy. In conclusion, misregulation of the alternative splicing of SCN5A may contribute to a subset of the cardiac dysfunctions observed in myotonic dystrophy.Peer reviewe

    Hippocampus-related cognitive disorders develop in the absence of epilepsy and ataxia in the heterozygous Cacna1a mutant mice tottering

    Get PDF
    CACNA1A-associated epilepsy and ataxia frequently accompany cognitive impairments as devastating co-morbidities. However, it is unclear whether the cognitive deficits are consequences secondary to the neurological symptoms elicited by CACNA1A mutations. To address this issue, Cacna1a mutant mice tottering (tg), and in particular tg/+ heterozygotes, serve as a suitable model system, given that tg/+ heterozygotes fail to display spontaneous absence epilepsy and ataxia typically observed in tg/tg homozygotes. Here, we examined hippocampus-dependent behaviors and hippocampal learning-related synaptic plasticity in tg mice. In behavioral analyses of tg/+ and tg/tg, acquisition and retention of spatial reference memory were characteristically impaired in the Morris water maze task, while working memory was intact in the eight-arm radial maze and T-maze tasks. tg/+ heterozygotes showed normal motor function in contrast to tg/tg homozygotes. In electrophysiological analyses, Schaffer collateral–CA1 synapses showed a deficit in the maintenance of long-term potentiation in tg/+ and tg/tg mice and an increased paired-pulse facilitation induced by paired pulses with 100 ms in tg/tg mice. Our results indicate that the tg mutation causes a dominant disorder of the hippocampus-related memory and synaptic plasticity, raising the possibility that in CACNA1A-associated human diseases, functionally aberrant CaV2.1 Ca²⁺ channels actively induce the observed cognitive deficits independently of the neurological symptoms

    Characterization of Nociceptive Behaviors Induced by Formalin in the Glabrous and Hairy Skin of Rats

    No full text
    Introduction: Glabrous skin and hairy skin are innervated by different types of noxious fibers. However, the different nociceptive behaviors induced by formalin, a commonly used model of acute inflammatory pain, have not yet been systematically examined in the glabrous and hairy skin. Methods: In this study, we compared nociceptive behaviors induced by formalin injections (2%, 4%, and 8%) into either glabrous skin (plantar surface) of the hind paw or hairy skin of the hin limb in adult rats. Results: A typical biphasic nociceptive response was seen after formalin injection into the plantar surface of the hind paw. A brief interphase separates the first and second phases where nociceptive behaviors were barely spotted. However, following subcutaneous injection into the hairy skin nociceptive behaviors were only seen after 10 minutes of formalin injection, which correlates in time with the second phase of the formalin response. First phase nociceptive behaviors were never seen with hairy skin injection, even following multiple injections of formalin. Conclusion: These data suggest that nociceptive behaviors and spinal responses induced by formalin injections to glabrous and hairy skin areas are different, and that the first and second phases may be mediated through different noxious afferent fibers

    Characterization of Nociceptive Behaviors Induced by Formalin in the Glabrous and Hairy Skin of Rats

    No full text
    Introduction: Glabrous skin and hairy skin are innervated by different types of noxious fibers. However, the different nociceptive behaviors induced by formalin, a commonly used model of acute inflammatory pain, have not yet been systematically examined in the glabrous and hairy skin. Methods: In this study, we compared nociceptive behaviors induced by formalin injections (2%, 4%, and 8%) into either glabrous skin (plantar surface) of the hind paw or hairy skin of the hin limb in adult rats. Results: A typical biphasic nociceptive response was seen after formalin injection into the plantar surface of the hind paw. A brief interphase separates the first and second phases where nociceptive behaviors were barely spotted. However, following subcutaneous injection into the hairy skin nociceptive behaviors were only seen after 10 minutes of formalin injection, which correlates in time with the second phase of the formalin response. First phase nociceptive behaviors were never seen with hairy skin injection, even following multiple injections of formalin. Conclusion: These data suggest that nociceptive behaviors and spinal responses induced by formalin injections to glabrous and hairy skin areas are different, and that the first and second phases may be mediated through different noxious afferent fibers
    corecore