113 research outputs found

    Biosafety and biosecurity as essential pillars of international health security and cross-cutting elements of biological nonproliferation

    Get PDF
    The critical aspects of biosafety, biosecurity, and biocontainment have been in the spotlight in recent years. There have also been increased international efforts to improve awareness of modern practices and concerns with regard to the safe pursuit of life sciences research, and to optimize current oversight frameworks, thereby resulting in decreased risk of terrorist/malevolent acquisition of deadly pathogens or accidental release of a biological agent, and increased safety of laboratory workers. Our purpose is to highlight how the World Health Organization’s (WHO) revised International Health Regulations (IHR[2005]), the Biological Weapons Convention (BWC), and the United Nations Security Council Resolution (UNSCR) 1540 overlap in their requirements with regard to biosafety and biosecurity in order to improve the understanding of practitioners and policymakers and maximize the use of national resources employed to comply with internationally-mandated requirements. The broad range of goals of these international instruments, which are linked by the common thread of biosafety and biosecurity, highlight their significance as essential pillars of international health security and cross-cutting elements of biological nonproliferation. The current efforts of the Republic of Georgia to enhance biosafety and biosecurity in accordance with these international instruments are summarized

    Epidemiology of Visceral Leishmaniasis in Georgia

    Get PDF
    This study investigated the transmission and prevalence of Leishmania parasite infection of humans in two foci of Visceral Leishmaniasis (VL) in Georgia, the well known focus in Tbilisi in the East, and in Kutaisi, a new focus in the West of the country. The seroprevalence of canine leishmaniasis was investigated in order to understand the zoonotic transmission. Blood samples of 1575 dogs (stray and pet) and 77 wild canids were tested for VL by Kalazar Detect rK39 rapid diagnostic tests. Three districts were investigated in Tbilisi and one in Kutaisi. The highest proportions of seropositive pet dogs were present in District #2 (28.1%, 82/292) and District #1 (26.9%, 24/89) in Tbilisi, compared to 17.3% (26/150) of pet dogs in Kutaisi. The percentage of seropositive stray dogs was also twice as high in Tbilisi (16.1%, n = 670) than in Kutaisi (8%, n = 50); only 2/58 wild animals screened were seropositive (2. 6%). A total of 873 Phlebotomine sand flies were collected, with 5 different species identified in Tbilisi and 3 species in Kutaisi; 2.3% of the females were positive for Leishmania parasites. The Leishmanin Skin Test (LST) was performed on 981 human subjects in VL foci in urban areas in Tbilisi and Kutaisi. A particularly high prevalence of LST positives was observed in Tbilisi District #1 (22.2%, 37.5% and 19.5% for ages 5–9, 15–24 and 25–59, respectively); lower prevalence was observed in Kutaisi (0%, 3.2% and 5.2%, respectively; P<0.05). This study shows that Tbilisi is an active focus for leishmaniasis and that the infection prevalence is very high in dogs and in humans. Although exposure is as yet not as high in Kutaisi, this is a new VL focus. The overall situation in the country is alarming and new control measures are urgently needed

    Hantavirus Infection in the Republic of Georgia

    Get PDF
    We describe a laboratory-confirmed case of hantavirus infection in the Republic of Georgia. Limited information is available about hantavirus infections in the Caucasus, although the infection has been reported throughout Europe and Russia. Increasing awareness and active disease surveillance contribute to our improved understanding of the geographic range of this pathogen

    Seroepidemiology and molecular diversity of Leishmania donovani complex in Georgia

    Get PDF
    Background Leishmaniasis includes multiple clinical syndromes, most notably visceral, cutaneous, and mucosal forms. Visceral leishmaniasis (VL), also known as kala-azar, is a potentially fatal disease endemic to large parts of Africa and Asia, and in South-Eastern Europe (Greece, Turkey, Georgia). Visceral leishmaniasis is a parasitic zoonosis caused by species of the L. donovani complex. In the classical epidemiological model the main reservoir for VL are canines. Methods The study included a cohort of 513 individuals of both genders (190 males and 323 females) from the ages of 1 to 70 years that were screened in ten villages across two districts in Kakheti using the Kalazar Detect™ rK39 rapid diagnostic test. The phylogenetic diversity patterns of local strains, based on the rDNA internal transcribed spacer (ITS) sequences, were assessed for samples obtained from patients with suspected L. donovani infection, from canine reservoirs and from Phlebotomus sand flies obtained from different geographical areas of Georgia and from Azerbaijan. Results Out of a total of 600 domestic dog blood samples 95 (15.8 %) were positive by rK39 rapid diagnostic tests. For symptomatic domestic dogs, the testing of conjunctival swabs or bone marrow aspirates revealed a higher VL incidence in Kvareli District (Kvareli; 19.4 %, n = 329) compared with that observed for Sagarejo District (Sagarejo; 11.4 %, n = 271). A total of 231 sand flies of both genders were collected during the 2-month period; of the 114 females, 1.75 % were PCR positive for the presence of Leishmania spp. Conclusions VL infection rates remain high in both canines and humans in Georgia, with disease in several known natural foci. The genetic relationships derived from rDNA internal transcribed spacer (ITS) sequence comparisons identified genetic subgroups, revealing preliminary insights into the genetic structure of L. donovani complex members currently circulating in the South Caucasus and demonstrates the utility of ITS-based genotyping in the resource-limited country of Georgia

    Characterization of pPCP1 Plasmids in Yersinia pestis Strains Isolated from the Former Soviet Union

    Get PDF
    Complete sequences of 9.5-kb pPCP1 plasmids in three Yersinia pestis strains from the former Soviet Union (FSU) were determined and compared with those of pPCP1 plasmids in three well-characterized, non-FSU Y. pestis strains (KIM, CO92, and 91001). Two of the FSU plasmids were from strains C2614 and C2944, isolated from plague foci in Russia, and one plasmid was from strain C790 from Kyrgyzstan. Sequence analyses identified four sequence types among the six plasmids. The pPCP1 plasmids in the FSU strains were most genetically related to the pPCP1 plasmid in the KIM strain and least related to the pPCP1 plasmid in Y. pestis 91001. The FSU strains generally had larger pPCP1 plasmid copy numbers compared to strain CO92. Expression of the plasmid's pla gene was significantly (P ≤ .05) higher in strain C2944 than in strain CO92. Given pla's role in Y. pestis virulence, this difference may have important implications for the strain's virulence

    Phylogeography of Francisella tularensis subspecies holarctica from the country of Georgia

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Francisella tularensis</it>, the causative agent of tularemia, displays subspecies-specific differences in virulence, geographic distribution, and genetic diversity. <it>F. tularensis </it>subsp. <it>holarctica </it>is widely distributed throughout the Northern Hemisphere. In Europe, <it>F. tularensis </it>subsp. <it>holarctica </it>isolates have largely been assigned to two phylogenetic groups that have specific geographic distributions. Most isolates from Western Europe are assigned to the B.Br.FTNF002-00 group, whereas most isolates from Eastern Europe are assigned to numerous lineages within the B.Br.013 group. The eastern geographic extent of the B.Br.013 group is currently unknown due to a lack of phylogenetic knowledge about populations at the European/Asian juncture and in Asia. In this study, we address this knowledge gap by describing the phylogenetic structure of <it>F. tularensis </it>subsp. <it>holarctica </it>isolates from the country of Georgia, and by placing these isolates into a global phylogeographic context.</p> <p>Results</p> <p>We identified a new genetic lineage of <it>F. tularensis </it>subsp. <it>holarctica </it>from Georgia that belongs to the B.Br.013 group. This new lineage is genetically and geographically distinct from lineages previously described from the B.Br.013 group from Central-Eastern Europe. Importantly, this new lineage is basal within the B.Br.013 group, indicating the Georgian lineage diverged before the diversification of the other known B.Br.013 lineages. Although two isolates from the Georgian lineage were collected nearby in the Ukrainian region of Crimea, all other global isolates assigned to this lineage were collected in Georgia. This restricted geographic distribution, as well as the high levels of genetic diversity within the lineage, is consistent with a relatively older origin and localized differentiation.</p> <p>Conclusions</p> <p>We identified a new lineage of <it>F. tularensis </it>subsp. <it>holarctica </it>from Georgia that appears to have an older origin than any other diversified lineages previously described from the B.Br.013 group. This finding suggests that additional phylogenetic studies of <it>F. tularensis </it>subsp. <it>holarctica </it>populations in Eastern Europe and Asia have the potential to yield important new insights into the evolutionary history and phylogeography of this broadly dispersed <it>F. tularensis </it>subspecies.</p

    Geo-temporal patterns to design cost-effective interventions for zoonotic diseases -the case of brucellosis in the country of Georgia

    Get PDF
    IntroductionControl of zoonosis can benefit from geo-referenced procedures. Focusing on brucellosis, here the ability of two methods to distinguish disease dissemination patterns and promote cost-effective interventions was compared.MethodGeographical data on bovine, ovine and human brucellosis reported in the country of Georgia between 2014 and 2019 were investigated with (i) the Hot Spot (HS) analysis and (ii) a bio-geographical (BG) alternative.ResultsMore than one fourth of all sites reported cases affecting two or more species. While ruminant cases displayed different patterns over time, most human cases described similar geo-temporal features, which were associated with the route used by migrant shepherds. Other human cases showed heterogeneous patterns. The BG approach identified small areas with a case density twice as high as the HS method. The BG method also identified, in 2018, a 2.6–2.99 higher case density in zoonotic (human and non-human) sites than in non-zoonotic sites (which only reported cases affecting a single species) –a finding that, if corroborated, could support cost-effective policy-making.DiscussionThree dissemination hypotheses were supported by the data: (i) human cases induced by sheep-related contacts; (ii) human cases probably mediated by contaminated milk or meat; and (iii) cattle and sheep that infected one another. This proof-of-concept provided a preliminary validation for a method that may support cost-effective interventions oriented to control zoonoses. To expand these findings, additional studies on zoonosis-related decision-making are recommended
    corecore