10 research outputs found

    Ancient plant-like terpene biosynthesis in corals.

    No full text

    Ancient plant-like terpene biosynthesis in corals

    No full text
    Octocorals are major contributors of terpenoid chemical diversity in the ocean. Natural products from other sessile marine animals are primarily biosynthesized by symbiotic microbes rather than by the host. Here, we challenge this long-standing paradigm by describing a monophyletic lineage of animal-encoded terpene cyclases (TCs) ubiquitous in octocorals. We characterized 15 TC enzymes from nine genera, several of which produce precursors of iconic coral-specific terpenoids, such as pseudopterosin, lophotoxin and eleutherobin. X-ray crystallography revealed that coral TCs share conserved active site residues and structural features with bacterial TCs. The identification of coral TCs enabled the targeted identification of the enzyme that constructs the coral-exclusive capnellane scaffold. Several TC genes are colocalized with genes that encode enzymes known to modify terpenes. This work presents an example of biosynthetic capacity in the kingdom Animalia that rivals the chemical complexity generated by plants, unlocking the biotechnological potential of octocorals for biomedical applications

    The GATA-Type Transcription Factor Csm1 Regulates Conidiation and Secondary Metabolism in Fusarium fujikuroi

    No full text
    GATA-type transcription factors (TFs) such as the nitrogen regulators AreA and AreB, or the light-responsive TFs WC-1 and WC-2, play global roles in fungal growth and development. The conserved GATA TF NsdD is known as an activator of sexual development and key repressor of conidiation in Aspergillus nidulans, and as light-regulated repressor of macroconidia formation in Botrytis cinerea. In the present study, we functionally characterized the NsdD ortholog in Fusarium fujikuroi, named Csm1. Deletion of this gene resulted in elevated microconidia formation in the wild type (WT) and restoration of conidiation in the non-sporulating velvet mutant ∆vel1 demonstrating that Csm1 also plays a role as repressor of conidiation in F. fujikuroi. Furthermore, biosynthesis of the two PKS-derived red pigments, bikaverin and fusarubins, is de-regulated under otherwise repressing conditions. Cross-species complementation of the ∆csm1 mutant with the B. cinerea ortholog LTF1 led to full restoration of WT-like growth, conidiation and pigment formation. In contrast, the F. fujikuroi CSM1 rescued only the defects in growth, the tolerance to H2O2 and virulence, but did not restore the light-dependent differentiation when expressed in the B. cinerea ∆ltf1 mutant. Microarray analysis comparing the expression profiles of the F. fujikuroi WT and the ∆csm1 mutant under different nitrogen conditions revealed a strong impact of this GATA TF on 19 of the 47 gene clusters in the genome of F. fujikuroi. One of the up-regulated silent gene clusters is the one containing the sesquiterpene cyclase-encoding key gene STC1. Heterologous expression of STC1 in Escherichia coli enabled us to identify the product as the volatile bioactive compound (–)-germacrene D

    Isolation, (bio)synthetic studies and evaluation of antimicrobial properties of drimenol-type sesquiterpenes of Termitomyces fungi.

    No full text
    Macrotermitinae termites have farmed fungi in the genus Termitomyces as a food source for millions of years. However, the biochemical mechanisms orchestrating this mutualistic relationship are largely unknown. To deduce fungal signals and ecological patterns that relate to the stability of this symbiosis, we explored the volatile organic compound (VOC) repertoire of Termitomyces from Macrotermes natalensis colonies. Results show that mushrooms emit a VOC pattern that differs from mycelium grown in fungal gardens and laboratory cultures. The abundance of sesquiterpenoids from mushrooms allowed targeted isolation of five drimane sesquiterpenes from plate cultivations. The total synthesis of one of these, drimenol, and related drimanes assisted in structural and comparative analysis of volatile organic compounds (VOCs) and antimicrobial activity testing. Enzyme candidates putatively involved in terpene biosynthesis were heterologously expressed and while these were not involved in the biosynthesis of the complete drimane skeleton, they catalyzed the formation of two structurally related monocyclic sesquiterpenes named nectrianolins

    The termite fungal cultivar Termitomyces combines diverse enzymes and oxidative reactions for plant biomass conversion

    Get PDF
    Please read abstract in the article.The Deutsche Forschungsgemeinschaft (DFG; German Research Foundation), the Danish Council for Independent Research, a European Research Council consolidator grant and the state budget of the Slovenian Research Agency.https://journals.asm.org/journal/mbiohj2021BiochemistryForestry and Agricultural Biotechnology Institute (FABI)GeneticsMicrobiology and Plant Patholog

    The Termite Fungal Cultivar <i>Termitomyces</i> Combines Diverse Enzymes and Oxidative Reactions for Plant Biomass Conversion

    No full text
    Macrotermitine termites have domesticated fungi in the genus Termitomyces as their primary food source using predigested plant biomass. To access the full nutritional value of lignin-enriched plant biomass, the termite-fungus symbiosis requires the depolymerization of this complex phenolic polymer. While most previous work suggests that lignocellulose degradation is accomplished predominantly by the fungal cultivar, our current understanding of the underlying biomolecular mechanisms remains rudimentary. Here, we provide conclusive omics and activity-based evidence that Termitomyces employs not only a broad array of carbohydrate-active enzymes (CAZymes) but also a restricted set of oxidizing enzymes (manganese peroxidase, dye decolorization peroxidase, an unspecific peroxygenase, laccases, and aryl-alcohol oxidases) and Fenton chemistry for biomass degradation. We propose for the first time that Termitomyces induces hydroquinone-mediated Fenton chemistry (Fe(2+) + H(2)O(2) + H(+) → Fe(3+) + (•)OH + H(2)O) using a herein newly described 2-methoxy-1,4-dihydroxybenzene (2-MH(2)Q, compound 19)-based electron shuttle system to complement the enzymatic degradation pathways. This study provides a comprehensive depiction of how efficient biomass degradation by means of this ancient insect’s agricultural symbiosis is accomplished

    Biosynthesis of Haloterpenoids in Red Algae via Microbial-like Type I Terpene Synthases

    No full text
    Red algae or seaweeds produce highly distinctive halogenated terpenoid compounds, including the pentabromochlorinated monoterpene halomon that was once heralded as a promising anticancer agent. The first dedicated step in the biosynthesis of these natural product molecules is expected to be catalyzed by terpene synthase (TS) enzymes. Recent work has demonstrated an emerging class of type I TSs in red algal terpene biosynthesis. However, only one such enzyme from a notoriously haloterpenoid-producing red alga (Laurencia pacifica) has been functionally characterized and the product structure is not related to halogenated terpenoids. Herein, we report 10 new type I TSs from the red algae Portieria hornemannii, Plocamium pacificum, L. pacifica, and Laurencia subopposita that produce a diversity of halogenated mono- and sesquiterpenes. We used a combination of genome sequencing, terpenoid metabolomics, in vitro biochemistry, and bioinformatics to establish red algal TSs in all four species, including those associated with the selective production of key halogenated terpene precursors myrcene, trans-β-ocimene, and germacrene D-4-ol. These results expand on a small but growing number of characterized red algal TSs and offer insight into the biosynthesis of iconic halogenated algal compounds that are not without precedence elsewhere in biology
    corecore