16 research outputs found

    Geographic surveillance of community associated MRSA infections in children using electronic health record data

    No full text
    Abstract Background Community- associated methicillin resistant Staphylococcus aureus (CA-MRSA) cause serious infections and rates continue to rise worldwide. Use of geocoded electronic health record (EHR) data to prevent spread of disease is limited in health service research. We demonstrate how geocoded EHR and spatial analyses can be used to identify risks for CA-MRSA in children, which are tied to place-based determinants and would not be uncovered using traditional EHR data analyses. Methods An epidemiology study was conducted on children from January 1, 2002 through December 31, 2010 who were treated for Staphylococcus aureus infections. A generalized estimated equations (GEE) model was developed and crude and adjusted odds ratios were based on S. aureus risks. We measured the risk of S. aureus as standardized incidence ratios (SIR) calculated within aggregated US 2010 Census tracts called spatially adaptive filters, and then created maps that differentiate the geographic patterns of antibiotic resistant and non-resistant forms of S. aureus. Results CA-MRSA rates increased at higher rates compared to non-resistant forms, p = 0.01. Children with no or public health insurance had higher odds of CA-MRSA infection. Black children were almost 1.5 times as likely as white children to have CA-MRSA infections (aOR 95% CI 1.44,1.75, p < 0.0001); this finding persisted at the block group level (p < 0.001) along with household crowding (p < 0.001). The youngest category of age (< 4 years) also had increased risk for CA-MRSA (aOR 1.65, 95%CI 1.48, 1.83, p < 0.0001). CA-MRSA encompasses larger areas with higher SIRs compared to non-resistant forms and were found in block groups with higher proportion of blacks (r = 0.517, p < 0.001), younger age (r = 0.137, p < 0.001), and crowding (r = 0.320, p < 0.001). Conclusions In the Atlanta MSA, the risk for CA-MRSA is associated with neighborhood-level measures of racial composition, household crowding, and age of children. Neighborhoods which have higher proportion of blacks, household crowding, and children < 4 years of age are at greatest risk. Understanding spatial relationship at a community level and how it relates to risks for antibiotic resistant infections is important to combat the growing numbers and spread of such infections like CA-MRSA

    Risk of Skin and Soft Tissue Infections among Children Found to be Staphylococcus aureus MRSA USA300 Carriers

    No full text
    The purpose of this study was to examine community-associated methicillin resistant Staphylococcus aureus (CA-MRSA) carriage and infections and determine risk factors associated specifically with MRSA USA300. A case control study was conducted in a pediatric emergency department. Nasal and axillary swabs were collected, and participants were interviewed for risk factors. The primary outcome was the proportion of S. aureus carriers among those presenting with and without a skin and soft tissue infection (SSTI). S. aureus carriers were further categorized into MRSA USA300 carriers or non MRSA USA300 carriers. We found MRSA USA300 carriage rate was higher in children less than 2 years of age, those with an SSTI, children with recent antibiotic use, and those with a family history of SSTI. MRSA USA300 carriers were also more likely to have lower income compared to non MRSA USA300 carriers and no S. aureus carriers. Rates of PVL genes were higher in MRSA carriage isolates with an SSTI, compared to MRSA carriage isolates of patients without an SSTI with an association between MRSA USA300 carriage and presence of PVL in those diagnosed with an abscess

    Comparison of bivalent and monovalent SARS-CoV-2 variant vaccines: the phase 2 randomized open-label COVAIL trial

    No full text
    Vaccine protection against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection wanes over time, requiring updated boosters. In a phase 2, open-label, randomized clinical trial with sequentially enrolled stages at 22 US sites, we assessed safety and immunogenicity of a second boost with monovalent or bivalent variant vaccines from mRNA and protein-based platforms targeting wild-type, Beta, Delta and Omicron BA.1 spike antigens. The primary outcome was pseudovirus neutralization titers at 50% inhibitory dilution (ID titers) with 95% confidence intervals against different SARS-CoV-2 strains. The secondary outcome assessed safety by solicited local and systemic adverse events (AEs), unsolicited AEs, serious AEs and AEs of special interest. Boosting with prototype/wild-type vaccines produced numerically lower ID titers than any variant-containing vaccine against all variants. Conversely, boosting with a variant vaccine excluding prototype was not associated with decreased neutralization against D614G. Omicron BA.1 or Beta monovalent vaccines were nearly equivalent to Omicron BA.1 + prototype or Beta + prototype bivalent vaccines for neutralization of Beta, Omicron BA.1 and Omicron BA.4/5, although they were lower for contemporaneous Omicron subvariants. Safety was similar across arms and stages and comparable to previous reports. Our study shows that updated vaccines targeting Beta or Omicron BA.1 provide broadly crossprotective neutralizing antibody responses against diverse SARS-CoV-2 variants without sacrificing immunity to the ancestral strain. ClinicalTrials.gov registration: NCT05289037
    corecore