36 research outputs found

    Ionosphere-thermosphere coupling via global-scale waves: new insights from two-years of concurrent in situ and remotely-sensed satellite observations

    Get PDF
    Growing evidence indicates that a selected group of global-scale waves from the lower atmosphere constitute a significant source of ionosphere-thermosphere (IT, 100–600 km) variability. Due to the geometry of the magnetic field lines, this IT coupling occurs mainly at low latitudes (< 30°) and is driven by waves originating in the tropical troposphere such as the diurnal eastward propagating tide with zonal wave number s = −3 (DE3) and the quasi-3-day ultra-fast Kelvin wave with s = −1 (UFKW1). In this work, over 2 years of simultaneous in situ ion densities from Ion Velocity Meters (IVMs) onboard the Ionospheric Connection Explorer (ICON) near 590 km and the Scintillation Observations and Response of the Ionosphere to Electrodynamics (SORTIE) CubeSat near 420 km, along with remotely-sensed lower (ca. 105 km) and middle (ca. 220 km) thermospheric horizontal winds from ICON’s Michelson Interferometer for Global High-resolution Thermospheric Imaging (MIGHTI) are employed to demonstrate a rich spectrum of waves coupling these IT regions. Strong DE3 and UFKW1 topside ionospheric variations are traced to lower thermospheric zonal winds, while large diurnal s = 2 (DW2) and zonally symmetric (D0) variations are traced to middle thermospheric winds generated in situ. Analyses of diurnal tides from the Climatological Tidal Model of the Thermosphere (CTMT) reveal general agreement near 105 km, with larger discrepancies near 220 km due to in situ tidal generation not captured by CTMT. This study highlights the utility of simultaneous satellite measurements for studies of IT coupling via global-scale waves

    Na lidar and MIGHTI/ICON investigation on turbopause tidal waves

    No full text
    Local full diurnal coverage of temperature variations across the turbopause (~ 90 km to 115 km altitude) is achieved by combining the nocturnal observations of a Sodium (Na) Doppler lidar on the Utah State University (USU) campus (41.7?N, 248.2?E) and NASA MIGHTI/ICON daytime observations made in the same vicinity. In this paper, utilizing this hybrid dataset during summer 2020 between June 12th and July 15th, we retrieve the temperature signatures of diurnal and semidiurnal tidal waves in this region. The tidal amplitudes are similar for both components: less than 5 K below ~ 98 km but increase considerably above, up to 19 K near 104 km, while experiencing significant dissipation near turbopause altitudes ~ 110 km. The tidal phase profiles show dominance of tidal components with long vertical wavelength (longer than 40 km) for the semidiurnal tide. The diurnal tide demonstrates close to evanescent wave behavior in the turbopause region

    Dimethyl titanocene Y : a valuable precursor for libraries of cytotoxic titanocene derivatives

    No full text
    Reaction of the known titanocene Y 2 with methyl lithium at -15 °C yields bis-[(p-methoxybenzyl)cyclopentadienyl]titanium(IV) dimethyl (dimethyl titanocene Y, 3), a hitherto unknown, surprisingly robust titanium (IV) dimethyl species. Dimethyl titanocene Y was utilized in the preparation of several bis-[(p-methoxybenzyl)cyclopentadienyl]titanium(IV) dicarboxylates by the reaction with the free carboxylic acids in fair to good yields. Cytotoxicity of all new compounds has been estimated in Hela S3 cells

    Errors From Asymmetric Emission Rate in Spaceborne, Limb Sounding Doppler Interferometry: A Correction Algorithm With Application to ICON/MIGHTI

    No full text
    The Michelson Interferometer for Global High-resolution Thermospheric Imaging (MIGHTI) on NASA's Ionospheric Connection Explorer (ICON) mission is designed to measure the neutral wind and temperature between 90 and ∌300 km altitude. Using the Doppler Asymmetric Spatial Heterodyne (DASH) spectroscopy technique, observations from MIGHTI can be used to derive thermospheric winds by measuring Doppler shifts of the atomic oxygen red line (630.0 nm) and green line (557.7 nm). Harding et al. (2017, https://doi.org/10.1007/s11214-017-0359-3) (Harding17) describe the wind retrieval algorithm in detail and point out the large uncertainties that result near the solar terminators and equatorial arcs, regions of large spatial gradients in airglow volume emission rates (VER). The uncertainties originate from the assumption of a constant VER at every given altitude, resulting in errors where the assumption is not valid when limb sounders, such as MIGHTI, observe regions with significant VER gradients. In this work, we introduce a new wind retrieval algorithm (Wu20) with the ability to account for VER that is asymmetric along the line of sight with respect to the tangent point. Using the predicted ICON orbit and simulated global VER variation, the greatest impact of the symmetric airglow assumption to the ICON vector wind product is found within 30° from the terminator when the spacecraft is in the dayside, causing an error of at least 10 m/s. The new algorithm developed in this study reduces the error near the terminator by a factor of 10. Although Wu20 improves the accuracy of the retrievals, it loses precision by 75% compared to Harding17

    Daily Variability in the Terrestrial UV Airglow

    No full text
    New capability for observing conditions in the upper atmosphere comes with the implementation of global ultraviolet (UV) imaging from geosynchronous orbit. Observed by the NASA GOLD mission, the emissions of atomic oxygen (OI) and molecular nitrogen (N2) in the 133–168-nm range can be used to characterize the behavior of these major constituents of the thermosphere. Observations in the ultraviolet from the first 200 days of 2019 indicate that the oxygen emission at 135.6 nm varies much differently than the broader Lyman-Birge-Hopfield (LBH) emission of N2. This is determined from monitoring the average instrument response from two roughly 1000 km2 areas, well separated from one another, at the same time of each day. Variations in the GOLD response to UV emissions in the monitored regions are determined, both in absolute terms and relative to a running 7-day average of GOLD measurements. We find that variations in N2 emissions in the two separate regions are significantly correlated, while oxygen emissions, observed in the same fixed geographic regions at the same universal time each day, exhibit a much lower correlation, and exhibit no correlation with the N2 emissions in the same regions. This indicates that oxygen densities in the airglow-originating altitude range of 150–200 km vary independently from the variations in nitrogen, which are so well correlated across the dayside to suggest a direct connection to variation in solar extreme-UV flux. The relation of the atomic oxygen variations to solar and geomagnetic activity is also shown to be low, suggesting the existence of a regional source that modifies the production of atomic oxygen in the thermosphere
    corecore