76 research outputs found

    Insect Immunity: From Systemic to Chemosensory Organs Protection

    Get PDF
    Insects are confronted to a wide range of infectious microorganisms. Tissues in direct contact with the environment, such as olfactory organs, are particularly exposed to pathogens. We review here the immune mechanisms operating in insects to control infections. Experiments conducted on the model organism Drosophila melanogaster (fruit fly) have provided genetic evidence that insects rely on both cellular and humoral mechanisms to control infections. Once epithelial barriers have been breached, circulating or membrane-associated innate immunity receptors trigger signaling in the fat body and lead to secretion of high concentrations of antimicrobial peptides active on fungi and bacteria in the hemolymph. This induced response involves the evolutionarily conserved Toll and immune deficiency (IMD) signaling pathways, which promote nuclear translocation of transcription factors of the NF-κB family. In addition, different subsets of differentiated blood cells or hemocytes can neutralize bacteria, fungi or parasites by phagocytosis, production of microbicidal compounds, or encapsulation. An alternative to mount costly immune responses is to sense pathogens through chemosensory cues and avoid them. Interestingly, some families of molecules, including the Toll receptors, participate in both olfaction and immunity.Online ISBN 978-3-030-05165-

    Cross-species comparative analysis of Dicer proteins during Sindbis virus infection

    Get PDF
    In plants and invertebrates RNA silencing is a major defense mechanism against virus infections. The first event in RNA silencing is dicing of long double stranded RNAs into small interfering RNAs (siRNAs). The Dicer proteins involved in this process are phylogenetically conserved and have the same domain organization. Accordingly, the production of viral derived siRNAs has also been observed in the mouse, but only in restricted cell types. To gain insight on this restriction, we compare the dicing activity of human Dicer and fly Dicer-2 in the context of Sindbis virus (SINV) infection. Expression of human Dicer in flies inefficiently rescues the production of viral siRNAs but confers some protection against SINV. Conversely, expression of Dicer-2 in human cells allows the production of viral 21 nt small RNAs. However, this does not confer resistance to viral infection, but on the contrary results in stronger accumulation of viral RNA. We further show that Dicer-2 expression in human cells perturbs interferon (IFN) signaling pathways and antagonizes protein kinase R (PKR)-mediated antiviral immunity. Overall, our data suggest that a functional incompatibility between the Dicer and IFN pathways explains the predominance of the IFN response in mammalian somatic cells

    Sequence-independent characterization of viruses based on the pattern of viral small RNAs produced by the host. [Corrigendum]

    Get PDF
    published erratum2016 Apr 202016 01 21importedErratum for : Sequence-independent characterization of viruses based on the pattern of viral small RNAs produced by the host. [Nucleic Acids Res. 2015

    Crystal Structure of Diedel, a Marker of the Immune Response of Drosophila melanogaster

    Get PDF
    Background: The Drosophila melanogaster gene CG11501 is up regulated after a septic injury and was proposed to act as a negative regulator of the JAK/STAT signaling pathway. Diedel, the CG11501 gene product, is a small protein of 115 residues with 10 cysteines. Methodology/Principal Findings: We have produced Diedel in Drosophila S2 cells as an extra cellular protein thanks to its own signal peptide and solved its crystal structure at 1.15 A ˚ resolution by SIRAS using an iodo derivative. Diedel is composed of two sub domains SD1 and SD2. SD1 is made of an antiparallel b-sheet covered by an a-helix and displays a ferredoxin-like fold. SD2 reveals a new protein fold made of loops connected by four disulfide bridges. Further structural analysis identified conserved hydrophobic residues on the surface of Diedel that may constitute a potential binding site. The existence of two conformations, cis and trans, for the proline 52 may be of interest as prolyl peptidyl isomerisation has been shown to play a role in several physiological mechanisms. The genome of D. melanogaster contains two other genes coding for proteins homologous to Diedel, namely CG43228 and CG34329. Strikingly, apart from Drosophila and the pea aphid Acyrthosiphon pisum, Diedel-related sequences were exclusively identified in a few insect DNA viruses of the Baculoviridae and Ascoviridae families. Conclusion/Significance: Diedel, a marker of the Drosophila antimicrobial/antiviral response, is a member of a small famil

    Sequence-independent characterization of viruses based on the pattern of viral small RNAs produced by the host

    Get PDF
    Virus surveillance in vector insects is potentially of great benefit to public health. Large-scale sequencing of small and long RNAs has previously been used to detect viruses, but without any formal comparison of different strategies. Furthermore, the identification of viral sequences largely depends on similarity searches against reference databases. Here, we developed a sequence-independent strategy based on virus-derived small RNAs produced by the host response, such as the RNA interference pathway. In insects, we compared sequences of small and long RNAs, demonstrating that viral sequences are enriched in the small RNA fraction. We also noted that the small RNA size profile is a unique signature for each virus and can be used to identify novel viral sequences without known relatives in reference databases. Using this strategy, we characterized six novel viruses in the viromes of laboratory fruit flies and wild populations of two insect vectors: mosquitoes and sandflies. We also show that the small RNA profile could be used to infer viral tropism for ovaries among other aspects of virus biology. Additionally, our results suggest that virus detection utilizing small RNAs can also be applied to vertebrates, although not as efficiently as to plants and insects.A correction has been published: Nucleic Acids Research, Volume 44, Issue 7, 20 April 2016, Pages 3477–3478, https://doi.org/10.1093/nar/gkw04

    Isolation of a natural DNA virus of <i>Drosophila melanogaster</i>, and characterisation of host resistance and immune responses

    Get PDF
    <div><p><i>Drosophila melanogaster</i> has played a key role in our understanding of invertebrate immunity. However, both functional and evolutionary studies of host-virus interaction in <i>Drosophila</i> have been limited by a dearth of native virus isolates. In particular, despite a long history of virus research, DNA viruses of <i>D</i>. <i>melanogaster</i> have only recently been described, and none have been available for experimental study. Here we report the isolation and comprehensive characterisation of Kallithea virus, a large double-stranded DNA virus, and the first DNA virus to have been reported from wild populations of <i>D</i>. <i>melanogaster</i>. We find that Kallithea virus infection is costly for adult flies, reaching high titres in both sexes and disproportionately reducing survival in males, and movement and late fecundity in females. Using the <i>Drosophila</i> Genetic Reference Panel, we quantify host genetic variance for virus-induced mortality and viral titre and identify candidate host genes that may underlie this variation, including <i>Cdc42-interacting protein 4</i>. Using full transcriptome sequencing of infected males and females, we examine the transcriptional response of flies to Kallithea virus infection and describe differential regulation of virus-responsive genes. This work establishes Kallithea virus as a new tractable model to study the natural interaction between <i>D</i>. <i>melanogaster</i> and DNA viruses, and we hope it will serve as a basis for future studies of immune responses to DNA viruses in insects.</p></div

    A single unidirectional piRNA cluster similar to the flamenco locus is the major source of EVE-derived transcription and small RNAs in Aedes aegypti mosquitoes

    No full text
    Endogenous viral elements (EVEs) are found in many eukaryotic genomes. Despite considerable knowledge about genomic elements such as transposons (TEs) and retroviruses, we still lack information about non-retroviral EVEs. Aedes aegypti mosquitoes have a highly repetitive genome that is covered with EVEs. Here, we identified 129 non-retroviral EVEs in the AaegL5 version of the A. aegypti genome. These EVEs were significantly associated with TEs and preferentially located in repeat-rich clusters within intergenic regions. Genome-wide transcriptome analysis showed that most EVEs generated transcripts although only around 1.4% were sense RNAs. The majority of EVE transcription was antisense and correlated with the generation of EVE-derived small RNAs. A single genomic cluster of EVEs located in a 143 kb repetitive region in chromosome 2 contributed with 42% of antisense transcription and 45% of small RNAs derived from viral elements. This region was enriched for TE-EVE hybrids organized in the same coding strand. These generated a single long antisense transcript that correlated with the generation of phased primary PIWI-interacting RNAs (piRNAs). The putative promoter of this region had a conserved binding site for the transcription factor Cubitus interruptus, a key regulator of the flamenco locus in Drosophila melanogaster. Here, we have identified a single unidirectional piRNA cluster in the A. aegypti genome that is the major source of EVE transcription fueling the generation of antisense small RNAs in mosquitoes. We propose that this region is a flamenco-like locus in A. aegypti due to its relatedness to the major unidirectional piRNA cluster in Drosophila melanogaster

    cGAS-like receptors sense RNA and control 3′2′-cGAMP signalling in Drosophila

    No full text
    International audienceCyclic GMP–AMP synthase (cGAS) is a cytosolic DNA sensor that produces the second messenger cG[2′–5′]pA[3′–5′]p (2′3′-cGAMP) and controls activation of innate immunity in mammalian cells1–5. Animal genomes typically encode multiple proteins with predicted homology to cGAS6–10, but the function of these uncharacterized enzymes is unknown. Here we show that cGAS-like receptors (cGLRs) are innate immune sensors that are capable of recognizing divergent molecular patterns and catalysing synthesis of distinct nucleotide second messenger signals. Crystal structures of human and insect cGLRs reveal a nucleotidyltransferase signalling core shared with cGAS and a diversified primary ligand-binding surface modified with notable insertions and deletions. We demonstrate that surface remodelling of cGLRs enables altered ligand specificity and used a forward biochemical screen to identify cGLR1 as a double-stranded RNA sensor in the model organism Drosophila melanogaster. We show that RNA recognition activates Drosophila cGLR1 to synthesize the novel product cG[3′–5′]pA[2′–5′]p (3′2′-cGAMP). A crystal structure of Drosophila stimulator of interferon genes (dSTING) in complex with 3′2′-cGAMP explains selective isomer recognition, and 3′2′-cGAMP induces an enhanced antiviral state in vivo that protects from viral infection. Similar to radiation of Toll-like receptors in pathogen immunity, our results establish cGLRs as a diverse family of metazoan pattern recognition receptors
    corecore