22 research outputs found

    MRI Sequence Influences Geometrical Information of Osseous Tissues

    Get PDF
    Although CT-scan data gives accurate geometrical information of bones, MRI data is commonly used instead due to its non-ionizing nature. The geometrical information has a number of applications, including image registration and computer simulations of the human joints, presurgical planning, prosthesis design, linking geometry with function and pain and kinematics. Hence, it is important to for the geometrical information extracted from the MRI data to be accurate. However, this information is influenced by the choice of the MRI sequence. Therefore, the aim of this study is to investigate the effect of different MRI sequences on the accuracy of geometrical information of bones

    Fixed-bearing Medial Unicompartmental Knee Arthroplasty Restores Neither the Medial Pivoting Behavior Nor the Ligament Forces of the Intact Knee in Passive Flexion

    Get PDF
    Medial unicompartmental knee arthroplasty (UKA) is an accepted treatment for isolated medial osteoarthritis. However, using an improper thickness for the tibial component may contribute to early failure of the prosthesis or disease progression in the unreplaced lateral compartment. Little is known of the effect of insert thickness on both knee kinematics and ligament forces. Therefore, a computational model of the tibiofemoral joint was used to determine how non-conforming, fixed bearing medial UKA affects tibiofemoral kinematics and tension in the medial collateral ligament (MCL) and the anterior cruciate ligament (ACL) during passive knee flexion. Fixed bearing medial UKA could not maintain the medial pivoting that occurred in the intact knee from 0° to 30° of passive flexion. Abnormal anterior-posterior (AP) translations of the femoral condyles relative to the tibia delayed coupled internal tibial rotation, which occurred in the intact knee from 0° to 30° flexion, but occurred from 30° to 90° flexion following UKA. Increasing or decreasing tibial insert thickness following medial UKA also failed to restore the medial pivoting behavior of the intact knee despite modulating MCL and ACL forces. Reduced AP constraint in non-conforming medial UKA relative to the intact knee leads to abnormal condylar translations regardless of insert thickness even with intact cruciate and collateral ligaments. This finding suggests that the conformity of the medial compartment as driven by the medial meniscus and articular morphology plays an important role in controlling AP condylar translations in the intact tibiofemoral joint during passive flexion

    Reproducibility in modeling and simulation of the knee:Academic, industry, and regulatory perspectives

    Get PDF
    Stakeholders in the modeling and simulation (M&amp;S) community organized a workshop at the 2019 Annual Meeting of the Orthopaedic Research Society (ORS) entitled “Reproducibility in Modeling and Simulation of the Knee: Academic, Industry, and Regulatory Perspectives.” The goal was to discuss efforts among these stakeholders to address irreproducibility in M&amp;S focusing on the knee joint. An academic representative from a leading orthopedic hospital in the United States described a multi-institutional, open effort funded by the National Institutes of Health to assess model reproducibility in computational knee biomechanics. A regulatory representative from the United States Food and Drug Administration indicated the necessity of standards for reproducibility to increase utility of M&amp;S in the regulatory setting. An industry representative from a major orthopedic implant company emphasized improving reproducibility by addressing indeterminacy in personalized modeling through sensitivity analyses, thereby enhancing preclinical evaluation of joint replacement technology. Thought leaders in the M&amp;S community stressed the importance of data sharing to minimize duplication of efforts. A survey comprised 103 attendees revealed strong support for the workshop and for increasing emphasis on computational modeling at future ORS meetings. Nearly all survey respondents (97%) considered reproducibility to be an important issue. Almost half of respondents (45%) tried and failed to reproduce the work of others. Two-thirds of respondents (67%) declared that individual laboratories are most responsible for ensuring reproducible research whereas 44% thought that journals are most responsible. Thought leaders and survey respondents emphasized that computational models must be reproducible and credible to advance knee M&amp;S.</p

    432 Ligament Engagement and In-Situ Force During Multiplanar Loading of the Medial Knee Ligaments

    No full text
    OBJECTIVES/GOALS: Load sharing across the arc of knee flexion of the medial knee ligaments (MKLs) is not well understood. The goal of this research is to characterize ligament engagement and in-situ force within the deep and superficial medial collateral ligament (dMCL, sMCL) and the posterior oblique ligament (POL) in response to externally applied multiplanar loads. METHODS/STUDY POPULATION: Ten human cadaveric knees, 5 male and 5 female, age 32±7 (25-42) [mean±SD (range min-max)] years, were mounted to a force sensor and a 6-degree-of-freedom robotic arm. Knee kinematics, before and after serial dissection of the sMCL, dMCL, and POL, were recorded from 0-30 degrees during applied isolated external rotation, valgus angulation, and anterior tibial moments, and the force (Newtons, N) borne by each structure was measured via the principle of superposition. Loads in the dMCL, sMCL, and POL will be compared across each knee and at each flexion angle with paired t-tests and repeated-measures analysis of variance with Tukey post hoc testing. Ten knees will provide >99% power to detect differences of 5N ± 3% at p=0.05, which is considered the threshold for clinically meaningful force differences. RESULTS/ANTICIPATED RESULTS: Our anticipated results include characterization of the means and standard deviations of the in-situ forces within the dMCL, sMCL, and POL in response to externally applied valgus angulation, tibial external rotation, and anterior-directed tibial loading at 0, 15, and 30 degrees of knee flexion. Our statistical analysis will determine if there are clinically meaningful differences (5N ± 3%) in the loads within each ligament at different knee flexion angles and will also provide data regarding differential relative ligament engagement for each applied force scenario, which is an indication of the percentage of contribution that each structure contributes to knee stability during application of forces and torques to the knee. DISCUSSION/SIGNIFICANCE: Data on ligament engagement and in-situ forces will help clinicians better diagnose potentially injured ligaments when they observe pathological knee laxity in an injured patient. Our results will also inform future computer modeling studies on injury mechanisms, individual anatomical variability, and surgical planning

    The effect of high tibial osteotomy on stress in the tibio-femoral joint: a computer simulation study

    No full text
    Osteoarthritis (OA) is a degenerative disease of all of the tissues within the diarthrodial joint and one of the leading causes of disability. Knee OA is often caused by lower limb malalignment, high body mass index, and injury to the surrounding soft tissues, resulting in a cyclic degradation of the joint. High tibial osteotomy (HTO) is a realignment surgery to restore knee function and minimise excessive loading. However, the link between malalignment and stress in the knee is not well understood and surgical outcomes by HTO have been unpredictable. Therefore the overarching goal is to develop a three-dimensional virtual surgery finite element (FE) model that integrates subject specific imaging and computational biomechanics to predict the effects of different realignment techniques on knee joint contact stress. FE models of a cadaveric knee joint were created from magnetic resonance images, using Mimics v14 (Materialise, Belgium). Following non-manifold assembly, these 3D models were exported to Abaqus 6.11 to determine the stress distribution within the medial-lateral compartments of the well-aligned knee. A 10° open wedge HTO was performed to simulate the malaligned knee. Boundary conditions of 300N axial load and 12 Nm bending moment were applied to simulate posture in the well aligned and malaligned knee. Peak compressive stress in the malaligned knee was 60% higher than that of the well-aligned knee. This excessive stress is considered a primary factor for the onset and progression of OA. These results highlight the importance of understanding the effects of HTO on the knee joint contact stresses in order to delay OA progression

    Deciphering the Art in Modeling and Simulation of the Knee Joint: Overall Strategy

    No full text
    Recent explorations of knee biomechanics have benefited from computational modeling, specifically leveraging advancements in finite element analysis and rigid body dynamics of joint and tissue mechanics. A large number of models have emerged with different levels of fidelity in anatomical and mechanical representation. Adapted modeling and simulation processes vary widely, based on justifiable choices in relation to anticipated use of the model. However, there are situations where modelers\u27 decisions seem to be subjective, arbitrary, and difficult to rationalize. Regardless of the basis, these decisions form the art of modeling, which impact the conclusions of simulation-based studies on knee function. These decisions may also hinder the reproducibility of models and simulations, impeding their broader use in areas such as clinical decision making and personalized medicine. This document summarizes an ongoing project that aims to capture the modeling and simulation workflow in its entirety-operation procedures, deviations, models, by-products of modeling, simulation results, and comparative evaluations of case studies and applications. The ultimate goal of the project is to delineate the art of a cohort of knee modeling teams through a publicly accessible, transparent approach and begin to unravel the complex array of factors that may lead to a lack of reproducibility. This manuscript outlines our approach along with progress made so far. Potential implications on reproducibility, on science, engineering, and training of modeling and simulation, on modeling standards, and on regulatory affairs are also noted

    Deciphering the Art in Modeling and Simulation of the Knee Joint: Overall Strategy

    No full text
    Recent explorations of knee biomechanics have benefited from computational modeling, specifically leveraging advancements in finite element analysis and rigid body dynamics of joint and tissue mechanics. A large number of models have emerged with different levels of fidelity in anatomical and mechanical representation. Adapted modeling and simulation processes vary widely, based on justifiable choices in relation to anticipated use of the model. However, there are situations where modelers\u27 decisions seem to be subjective, arbitrary, and difficult to rationalize. Regardless of the basis, these decisions form the art of modeling, which impact the conclusions of simulation-based studies on knee function. These decisions may also hinder the reproducibility of models and simulations, impeding their broader use in areas such as clinical decision making and personalized medicine. This document summarizes an ongoing project that aims to capture the modeling and simulation workflow in its entirety-operation procedures, deviations, models, by-products of modeling, simulation results, and comparative evaluations of case studies and applications. The ultimate goal of the project is to delineate the art of a cohort of knee modeling teams through a publicly accessible, transparent approach and begin to unravel the complex array of factors that may lead to a lack of reproducibility. This manuscript outlines our approach along with progress made so far. Potential implications on reproducibility, on science, engineering, and training of modeling and simulation, on modeling standards, and on regulatory affairs are also noted
    corecore