9 research outputs found

    Model Development of Quantum Dot Devices for c Radiation Detection Using Block Diagram Programming

    No full text
    The main objective of this paper is to develop a model of quantum dot (QD) devices for incident c radiation detection. A novel methodology is introduced to characterize the effect of c radiation on QD detectors. In this methodology, we used VisSim environment along with the block diagram programming procedures. The benefit of using this modeling language is the simplicity of carrying out the performance's measurement through computer simulation instead of setting up a practical procedure, which is expensive as well as difficult in management. The roles that the parameters of fabrication can play in the characteristics of QDs devices are discussed through developed models implemented by VisSim environment. The rate equations of the QD devices under c radiation are studied. The effect of incident c radiation on the optical gain, power, and output photon densities is investigated. The implemented models can help designers and scientists to optimize their devices to meet their requirements

    HARDWARE IMPLEMENTATION OF VIRTUAL RECONFIGURABLE CIRCUIT FOR FAULT TOLERANT EVOLVABLE HARDWARE SYSTEM ON FPGA

    No full text
    Abstract This research verify and describes a Virtual Reconfigurable Circuit (VRC) that designed and implemented for a Fault Tolerant Evolvable Hardware (EHW) system used to calculate the thermal power output of Egypt's second Training and Research Reactor (ETRR2) during operation. This circuit have three measured input signals from the reactor core: inlet temperature T in , outlet temperature T out , mass flow rate Q, and one output, which is the calculated thermal power. In any time the true thermal power reading should be available even one input signal get lost due to a problem in its transducer, or wire cutting, …etc. Typically, this is the function of that Fault Tolerant EHW system. The VRC design will implemented over ordinary Field Programmable Gate Array (FPGA) chip. Reducing the FPGA's configuration bits length++ is the main advantage of using VRC. Most VRCs done before used logic based function elements, while in this work, an arithmetic based elements are used, to accommodate the application nature. The design is fully synthesized on ALTERA Cyclone IV GX Family, and the design gave promising results when targeted to the EP4CGX30CF23C6 FPGA chip

    Image reconstruction technique using projection data from neutron tomography system

    Get PDF
    Neutron tomography is a very powerful technique for nondestructive evaluation of heavy industrial components as well as for soft hydrogenous materials enclosed in heavy metals which are usually difficult to image using X-rays. Due to the properties of the image acquisition system, the projection images are distorted by several artifacts, and these reduce the quality of the reconstruction. In order to eliminate these harmful effects the projection images should be corrected before reconstruction. This paper gives a description of a filter back projection (FBP) technique, which is used for reconstruction of projected data obtained from transmission measurements by neutron tomography system We demonstrated the use of spatial Discrete Fourier Transform (DFT) and the 2D Inverse DFT in the formulation of the method, and outlined the theory of reconstruction of a 2D neutron image from a sequence of 1D projections taken at different angles between 0 and π in MATLAB environment. Projections are generated by applying the Radon transform to the original image at different angles

    Identification of Leaf Rust Resistance Genes in Selected Egyptian Wheat Cultivars by Molecular Markers

    Get PDF
    Leaf rust, caused by Puccinia triticina Eriks., is a common and widespread disease of wheat (Triticum aestivum L.) in Egypt. Host resistance is the most economical, effective, and ecologically sustainable method of controlling the disease. Molecular markers help to determine leaf rust resistance genes (Lr genes). The objective of this study was to identify Lr genes in fifteen wheat cultivars from Egypt. Ten genes, Lr13, Lr19, Lr24, Lr26, Lr34, Lr35 Lr36, Lr37, Lr39, and Lr46, were detected in fifteen wheat cultivars using various molecular markers. The most frequently occurring genes in fifteen Egyptian wheat cultivars were Lr13, Lr24, Lr34, and Lr36 identified in all the cultivars used, followed by Lr26 and Lr35 (93%), Lr39 (66%), Lr37 (53%), and Lr46 (26.6%) of the cultivars, and finally Lr19 was present in 33.3% of cultivars. It is concluded that there was a good variation in Lr genes carried by wheat cultivars commercially grown in Egypt. Therefore, strategies for deploying resistance genes to prolong effective disease resistance are suggested to control wheat leaf rust disease

    The role of limiter in Egyptor Tokamak

    No full text
    Consiglio Nazionale delle Ricerche - Biblioteca Centrale - P.le Aldo Moro, 7, Rome / CNR - Consiglio Nazionale delle RichercheSIGLEITItal
    corecore