609 research outputs found

    Feature extraction of hyperspectral images using boundary semi-labeled samples and hybrid criterion

    Get PDF
    Feature extraction is a very important preprocessing step for classification of hyperspectral images. The linear discriminant analysis (LDA) method fails to work in small sample size situations. Moreover, LDA has poor efficiency for non-Gaussian data. LDA is optimized by a global criterion. Thus, it is not sufficiently flexible to cope with the multi-modal distributed data. We propose a new feature extraction method in this paper, which uses the boundary semi-labeled samples for solving small sample size problem. The proposed method, which called hybrid feature extraction based on boundary semi-labeled samples (HFE-BSL), uses a hybrid criterion that integrates both the local and global criteria for feature extraction. Thus, it is robust and flexible. The experimental results with three real hyperspectral images show the good efficiency of HFE-BSL compared to some popular and state-of-the-art feature extraction methods

    Overlap-based feature weighting: The feature extraction of Hyperspectral remote sensing imagery

    Get PDF
    Hyperspectral sensors provide a large number of spectral bands. This massive and complex data structure of hyperspectral images presents a challenge to traditional data processing techniques. Therefore, reducing the dimensionality of hyperspectral images without losing important information is a very important issue for the remote sensing community. We propose to use overlap-based feature weighting (OFW) for supervised feature extraction of hyperspectral data. In the OFW method, the feature vector of each pixel of hyperspectral image is divided to some segments. The weighted mean of adjacent spectral bands in each segment is calculated as an extracted feature. The less the overlap between classes is, the more the class discrimination ability will be. Therefore, the inverse of overlap between classes in each band (feature) is considered as a weight for that band. The superiority of OFW, in terms of classification accuracy and computation time, over other supervised feature extraction methods is established on three real hyperspectral images in the small sample size situation

    The abundance of endofungal bacterium Rhizobium radiobacter (syn. Agrobacterium tumefaciens) increases in its fungal host Piriformospora indica during the tripartite sebacinalean symbiosis with higher plants

    Get PDF
    Rhizobium radiobacter (syn. Agrobacterium tumefaciens, syn. "Agrobacterium fabrum") is an endofungal bacterium of the fungal mutualist Piriformospora (syn. Serendipita) indica (Basidiomycota), which together form a tripartite Sebacinalean symbiosis with a broad range of plants. R. radiobacter strain F4 (RrF4), isolated from P. indica DSM 11827, induces growth promotion and systemic resistance in cereal crops, including barley and wheat, suggesting that R. radiobacter contributes to a successful symbiosis. Here, we studied the impact of endobacteria on the morphology and the beneficial activity of P. indica during interactions with plants. Low numbers of endobacteria were detected in the axenically grown P. indica (long term lab-cultured, lcPiri) whereas mycelia colonizing the plant root contained increased numbers of bacteria. Higher numbers of endobacteria were also found in axenic cultures of P. indica that was freshly re-isolated (riPiri) from plant roots, though numbers dropped during repeated axenic re-cultivation. Prolonged treatments of P. indica cultures with various antibiotics could not completely eliminate the bacterium, though the number of detectable endobacteria decreased significantly, resulting in partial-cured P. indica (pcPiri). pcPiri showed reduced growth in axenic cultures and poor sporulation. Consistent with this, pcPiri also showed reduced plant growth promotion and reduced systemic resistance against powdery mildew infection as compared with riPiri and lcPiri. These results are consistent with the assumption that the endobacterium R. radiobacter improves P. indica's fitness and thus contributes to the success of the tripartite Sebacinalean symbiosis

    Age-related differences in features associated with polycystic ovary syndrome in normogonadotrophic oligo-amenorrhoeic infertile women of reproductive years

    Get PDF
    OBJECTIVE: To assess the effect of age on clinical, endocrine and sonographic features associated with polycystic ovary syndrome (PCOS) in normogonadotrophic anovulatory infertile women of reproductive years

    Near-Field Wireless Power Transfer with Dynamic Metasurface Antennas

    Get PDF
    Radio frequency wireless power transfer (WPT) enables charging low-power mobile devices without relying on wired infrastructure. Current existing WPT systems are typically designed assuming far-field propagation, where the radiated energy is steered in given angles, resulting in limited efficiency and possible radiation in undesired locations. When large arrays at high frequencies, such as dynamic metasurface antenna (DMA), are employed, WPT might take place in the radiating nearfield (Fresnel) region where spherical wave propagation holds, rather than plane wave propagation as in the far-field. In this paper, we study WPT systems charging multiple devices in the Fresnel region, where the energy transmitter is equipped with an emerging DMA, exploring how the antenna configuration can exploit the spherical wavefront to generate focused energy beams. In particular, after presenting a mathematical model for DMA-based radiating near-field WPT systems, we characterize the weighted sum-harvested energy maximization problem of the considered system, and we propose an efficient solution to jointly design the DMA weights and digital precoding vector. Simulation results show that our design generates focused energy beams that are capable of improving energy transfer efficiency in the radiating near-field with minimal energy pollution

    Beam Focusing for Near-Field Multiuser MIMO Communications

    Get PDF
    Large antenna arrays and high-frequency bands are two key features of future wireless communication systems. The combination of large-scale antennas with high transmission frequencies often results in the communicating devices operating in the near-field (Fresnel) region. In this paper, we study the potential of beam focusing, feasible in near-field operation, in facilitating high-rate multi-user downlink multiple-input multiple-output (MIMO) systems. As the ability to achieve beam focusing is dictated by the transmit antenna, we study near-field signalling considering different antenna structures, including fully-digital architectures, hybrid phase shifter-based precoders, and the emerging dynamic metasurface antenna (DMA) architecture for massive MIMO arrays. We first provide a mathematical model to characterize near-field wireless channels as well as the transmission pattern for the considered antenna architectures. Then, we formulate the beam focusing problem for the goal of maximizing the achievable sum-rate in multi-user networks. We propose efficient solutions based on the sum-rate maximization task for fully-digital, (phase shifters based-) hybrid and DMA architectures. Simulation results show the feasibility of the proposed beam focusing scheme for both single- and multi-user scenarios. In particular, the designed focused beams provide a new degree of freedom to mitigate interference in both angle and distance domains, which is not achievable using conventional far-field beam steering, allowing reliable communications for uses even residing at the same angular direction

    Near-Field Wireless Power Transfer for 6G Internet of Everything Mobile Networks: Opportunities and Challenges

    Get PDF
    Radiating wireless power transfer (WPT) brings forth the possibility to cost-efficiently charge wireless devices without requiring a wiring infrastructure. As such, it is expected to play a key role in the deployment of limited-battery communicating devices, as part of the 6G-enabled Internet of Everything (IoE) vision. To date, radiating WPT technologies are mainly studied and designed assuming that the devices are located in the far-field region of the power radiating antenna, resulting in relatively low energy transfer efficiency. However, with the transition of 6G systems to mmWave frequencies combined with the use of large-scale antennas, future WPT devices are likely to operate in the radiating near-field (Fresnel) region. In this article, we provide an overview of the opportunities and challenges that arise from radiating near-field WPT. In particular, we discuss the possibility to realize beam focusing in near-field radiating conditions, and highlight its possible implications for WPT in future IoE networks. Furthermore, we overview some of the design challenges and research directions that arise from this emerging paradigm, including its simultaneous operation with wireless communications, radiating waveform considerations, hardware aspects, and operation with typical antenna architectures

    The effect of intra-articular meperidine and bupivacaine 0.5 on postoperative pain of arthroscopic knee surgery; a randomized double blind clinical trial

    Get PDF
    Background: Arthroscopic knee surgeries have a painful postoperative course, which often necessitates acute pain management. Among different analgesia techniques, Intra-articular injection is the technique of choice for many pain specialists, based on its confined effect to the surgical site (knee), lack of systemic effects and promotion of safe early ambulation. Objectives: The aim of this study was to compare analgesic effects of intra-articular meperidine, bupivacaine 0.5 or their combination after knee arthroscopic surgery. Patients and Methods: Sixty ASA class I-II patients� candidates for arthroscopy knee surgery enrolled in a randomized double blind study to receive either 20 mL of bupivacaine 0.5; 100 mg meperidine (diluted in normal saline) or bupivacaine 0.5 along with 100 mg meperidine. A written informed consent was obtained from all patients. Postoperative analgesia duration, VAS at 2, 6, 12 and 24 hours, the Results: The bupivacaine-meperidine group had better duration of postoperative analgesia (P = 0.001), latter first analgesic request (P � first analgesic request time, total fentanyl consumption in first 24 hours, patients� satisfaction and adverse effects were recorded. 0.001), lower total fentanyl consumption in first 24 hours after the operation (P = 0.001), less mean VAS at 2 hours (P = 0.001) and more patients� overall satisfaction (P = 0.01) compared with each medication alone. VAS at 6, 12 and 24 postoperative hours were not different between the groups of study. No adverse effects were observed. Conclusions: Although postoperative intra-articular meperidine is a better alternative for bupivacaine, their combination could improve their analgesic effects compared with each other alone. © 2015, Iranian Society of Regional Anesthesia and Pain Medicine (ISRAPM)

    Evaluation of nanocarrier targeted drug delivery of capecitabine-PAMAM dendrimer complex in a mice colorectal cancer model

    Get PDF
    Capecitabine, an effective anticancer drug in colorectal cancer chemotherapy, may create adverse side effects on healthy tissues. In the present study, we first induced colon adenocarcinoma with azoxymethane, a carcinogen agent, and then investigated the potentiality of polyamidoamine (PAMAM) dendrimer to improve capecitabine therapeutic index and decrease its adverse side effects on healthy tissues like liver and bone marrow. Other variables such as nanoparticle concentrations have also been investigated. Drug loading concentration (DLC) and encapsulation efficiency (EE) were calculated for capecitabine/dendrimer complex. Experimental results showed an increase in DLC percentage resulted from elevated capecitabine/dendrimer ratio. Capecitabine/dendrimer complex could reduce tumor size and adverse side effects in comparison with free capecitabine form. © 2016 Tehran University of Medical Sciences. All rights reserved
    corecore