7 research outputs found

    Antioxidant and hepatorenal protective effects of bee pollen fractions against propionic acid‐induced autistic feature in rats

    Get PDF
    In the brain, propionic acid (PA) can cross cell membranes and accumulate within cells, leading to intracellular acidification, which may alter neurotransmitter release (NT), communication between neurons, and behavior. Such elevation in levels of PA constitutes a neurodevelopmental metabolic disorder called propionic acidemia, which could clinically manifest as autism. The purpose of this study was to investigate the protective effects of different fractions of bee pollen (BP) on PA‐induced autism in rats, and to evaluate their effects on the expression of liver and renal biomarkers. Groups of rats received treatments of different fractions of BP at a dose of 250 mg/kg of body weight/day for a period of 1 month. Normal control group I and group II were orally administered with phosphate‐buffered saline and propionic acid, respectively, for 3 days. BP contains various health‐promoting phenolic components. Different fractions of BP administered pre‐ and post‐treatment with PA showed significant reduction in the levels of liver and renal biomarkers (p < .05). Also, a significant enhancement in the levels of glutathione S‐transferase (GST), catalase CAT), and ascorbic acid (VIT C) was observed. Supplementation with BP significantly reduced biochemical changes in the liver, kidneys, and brain of rats with PA‐induced toxicity. It exhibited protective effects against oxidative damage and reactive oxygen species produced by PA‐induced adverse reactions in rats. Taken together, our study shows that BP possesses protective effects in PA‐induced liver and kidney damage

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance

    Get PDF
    INTRODUCTION Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic. RATIONALE We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs). RESULTS Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants. CONCLUSION Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century

    Isatin-Hydrazones with Multiple Receptor Tyrosine Kinases (RTKs) Inhibitory Activity and In-Silico Binding Mechanism

    No full text
    Recently, we have reported a series of isatin hydrazone, two of them, namely, 3-((2,6-dichlorobenzylidene)hydrazono)indolin-2-one (1) and 3-((2-chloro-6-fluorobenzylidene)hydrazono)indolin-2-one (2) having potent cytotoxicity, showing cyclin-dependent kinases (CDK2) inhibitory activity and bearing recommended drug likeness properties. Since both compounds (1 and 2) showed inhibitory activity against CDK2, we assumed it would also have multiple receptor tyrosine kinases (RTKs) inhibitory activity. Considering those points, here, above-mentioned two isatin hydrazone 1 and 2 were synthesized using previously reported method for further investigation of their potency on RTKs (EGFR, VEGFR-2 and FLT-3) inhibitory activity. As expected, Compound 1 exhibited excellent inhibitory activity against epidermal growth factor receptor (EGFR, IC50 = 0.269 ”M), vascular epidermal growth factor receptor 2 (VEGFR-2, IC50 = 0.232 ”M) and FMS-like tyrosine kinase-3 (FLT-3, IC50 = 1.535 ”M) tyrosine kinases. On the other hand, Compound 2 also exhibited excellent inhibitory activity against EGFR (IC50 = 0.369 ”M), VEGFR-2 (IC50 = 0.266 ”M) and FLT-3 (IC50 = 0.546 ”M) tyrosine kinases. A molecular docking study with EGFR, VEGFR-2 and FLT-3 kinase suggested that both compounds act as type I ATP competitive inhibitors against EGFR and VEGFR-2, and type II ATP non-competitive inhibitors against FLT-3

    A Facile Synthesis and Molecular Characterization of Certain New Anti-Proliferative Indole-Based Chemical Entities

    No full text
    Cancer cells frequently develop drug resistance, which leads to chemotherapeutic treatment failure. Additionally, chemotherapies are hindered by their high toxicity. Therefore, the development of new chemotherapeutic drugs with improved clinical outcomes and low toxicity is a major priority. Several indole derivatives exhibit distinctive anti-cancer mechanisms which have been associated with various molecular targets. In this study, target compounds 4a–q were obtained through the reaction of substituted benzyl chloride with hydrazine hydrate, which produces benzyl hydrazine. Subsequently, the appropriate substituted benzyl hydrazine was allowed to react with 1H-indole-2-carboxylic acid or 5-methoxy-1H-indole-2-carboxylic acid using 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide as a coupling agent. All compounds exhibited cytotoxicity in three cell lines, namely, MCF-7, A549, and HCT. Compound 4e exhibited the highest cytotoxicity, with an average IC50 of 2 ”M. Moreover, a flow cytometry study revealed a significantly increased prevalence of Annexin-V and 7-AAD positive cell populations. Several derivatives of 4a–q showed moderate to high cytotoxicity against the tested cell lines, with compound 4e having the highest cytotoxicity, indicating that it may possess potential apoptosis-inducing capabilities
    corecore