17 research outputs found

    Side effects of COVID-19 vaccines in the middle eastern population

    Get PDF
    The COVID-19 pandemic has caused severe worldwide health concerns since its first description as the SARS-COV-2 virus in December 2019. The wide dissemination of this virus, together with the lack of treatment, prompted vaccine development within a short period of time to elicit a protective immunity against COVID-19. Due to their rapid development, potential subsequent side effects of COVID-19 vaccines were overlooked, which might lead to many health concerns. This is especially true for patients at a greater risk of harm from COVID-19, such as pregnant women, children, and patients with pre-existing chronic diseases. In this review, we provide a summary of common to rare side effects of administrated COVID-19 vaccines in a Middle Eastern population. We have found that the distinction between side effects from COVID-19 vaccines in terms of frequency and severity is attributed to the differences in study populations, gender, and age. Pain at the injection site, fever, headache, fatigue, and muscle pain were the most common reported side effects. Vaccinated subjects with previous COVID-19 infection exhibited an equivalent neutralizing response after just one dose compared to two doses of vaccine. Consequently, individuals who experienced more side effects had significantly higher antibody levels. This indicates that having better immunity correlates with higher antibody levels, leading to a higher frequency of vaccine side effects. Individuals with underlying comorbidities, particularly having known allergies and with illnesses such as diabetes and cancer, might be more prone to post-vaccination side effects. Studies of a high-risk population in Middle Eastern countries are limited. Future studies should be considered to determine long-term side effects, side effects after booster doses, and side effect differences in cases of heterologous and homologous vaccination for better understanding and proper handling of high-risk populations and patients who experience these side effects

    Etude des organismes multirésistants dans le bétail libanais

    No full text
    De nos jours, l'épidémiologie des bactéries multi-résistantes a évolué et ne se limite plus aux milieux hospitaliers. En effet, les animaux sont désormais considérés comme d’importants réservoirs de bactéries multi-résistantes, notamment des Bacilles à Gram négatif sécréteurs de bêta-lactamases et/ou résistant à la colistine. L'émergence de ces bactéries chez les animaux est due principalement à l’utilisation excessive d’antibiotiques en tant que prophylaxie et facteurs de croissance. Le transfert d’organismes multi-résistants aux antibiotiques provenant d’animaux vers les humains est un problème majeur pouvant entrainer de graves infections. La transmission zoonotique se fait par contact direct/indirect mais aussi par voie environnementale. Au Liban, plusieurs études ont été menées dans les hôpitaux et ont montré une prévalence élevée de bactéries multi-résistantes. En revanche, ces études sont rares dans le milieu vétérinaire. Le but de ce travail de thèse est de décrire l'épidémiologie des organismes multi-résistants dans les animaux d’élevage destinés à la consommation au Liban. Le typage des bactéries par MLST et le séquençage du génome entier ont été utilisés pour décrire la prévalence des organismes multi-résistants et les mécanismes de résistance chez les souches isolées. Nous pouvons ainsi conclure que les élevages de poulets et de porcs sont de puissants réservoirs de gènes de résistance BLSE et mcr-1 au Liban. La dissémination de la résistance semble être polyclonale et liée à la propagation de plasmides porteurs de gènes de résistance. Par conséquent, l'utilisation de la colistine en médecine vétérinaire au Liban doit être interdite.Nowadays, the epidemiology of multi-drug resistance has changed and is no more confined to the hospital settings. Food producing animals are increasingly regarded as potent reservoirs of multi-drug resistant organisms i.e. beta lactamase producers and colistin-resistant Gram-negative bacilli. The emergence of multi-drug resistance in animals is thought to be mainly driven by the overuse of antibiotics as growth promoters and prophylaxis. The dissemination of resistant organisms in animals is sparked by the concern of being transferred to humans where they can be candidates for infections with limited therapeutic options. The zoonotic transmission of resistant organisms from animals to humans occurs mainly via direct/indirect contact but also via environmental routes. In Lebanon, several studies were conducted in hospitals and showed a high prevalence of multi-drug resistance; unlikely, these studies are scarce in animals. The aim of this thesis research was thus to describe the epidemiology of multi-drug resistant organisms in Lebanese Livestock Multi-locus sequence typing and whole genome sequencing were used to describe the prevalence of multi-drug resistant organisms and the corresponding mechanisms of resistance in the isolated strains from chicken, pigs, farmers and environment. Chicken and swine farms showed to be potent reservoirs of ESBL and mcr-1 genes in Lebanon. The dissemination of multi-drug resistance appears to be multi-clonal and related to the spread of plasmid carrying resistance genes. Colistin use in veterinary medicine in Lebanon should be banned

    Prevalence and Emergence of Extended-Spectrum Cephalosporin-, Carbapenem- and Colistin-Resistant Gram Negative Bacteria of Animal Origin in the Mediterranean Basin

    No full text
    International audienceIn recent years, extended ESBL and carbapenemase producing Gram negative bacteria have become widespread in hospitals, community settings and the environment. This has been triggered by the few therapeutic options left when infections with these multi-drug resistant organisms occur. The emergence of resistance to colistin, the last therapeutic option against carbapenem-resistant bacteria, worsened the situation. Recently, animals were regarded as potent antimicrobial reservoir and a possible source of infection to humans. Enteric Gram negative bacteria in animals can be easily transmitted to humans by direct contact or indirectly through the handling and consumption of undercooked/uncooked animal products. In the Mediterranean basin, little is known about the current overall epidemiology of multi-drug resistant bacteria in livestock, companion, and domestic animals. This review describes the current epidemiology of ESBL, carbapenemase producers and colistin resistant bacteria of animal origin in this region of the world. The CTX-M group 1 seems to prevail in animals in this area, followed by SHV-12 and CTX-M group 9. The dissemination of carbapenemase producers and colistin resistance remains low. Isolated multi-drug resistant bacteria were often co-resistant to non-beta-lactam antibiotics, frequently used in veterinary medicine as treatment, growth promoters, prophylaxis and in human medicine for therapeutic purposes. Antibiotics used in veterinary medicine in this area include mainly tetracycline, aminoglycosides, fluoroquinolones, and polymyxins. Indeed, it appears that the emergence of ESBL and carbapenemase producers in animals is not related to the use of beta-lactam antibiotics but is, rather, due to the co-selective pressure applied by the over usage of non-beta-lactams. The level of antibiotic consumption in animals should be, therefore, re-considered in the Mediterranean area especially in North Africa and western Asia where no accurate data are available about the level of antibiotic consumption in animals

    Prevalence and Characterization of Multi-Drug-Resistant Gram-Negative Bacilli Isolated From Lebanese Poultry: A Nationwide Study

    Get PDF
    Currently, antimicrobial resistance is one of the most prominent public health issues. In fact, there is increasing evidence that animals constitute a reservoir of antimicrobial resistance. In collaboration with the Lebanese Ministry of Agriculture, the aim of this study was to determine the prevalence of intestinal carriage of multi-drug-resistant Gram-negative Bacilli in poultry farms at the national level. Between August and December 2015, 981 fecal swabs were obtained from 49 poultry farms distributed across Lebanon. The swabs were subcultured on MacConkey agar supplemented with cefotaxime (2 μg/ml). Isolated strains were identified using MALDI-TOF mass spectrometry. Multilocus sequence typing analysis was performed for Escherichia coli. Phenotypic detection of extended spectrum β-lactamases (ESBL) and AmpC production was performed using double disk synergy and the ampC disk test, respectively. β-lactamase encoding genes blaCTX-M, blaTEM, blaSHV, blaFOX, blaMOX, blaEBC, blaACC, blaDHA, and blaCMY using PCR amplification. Out of 981 fecal swabs obtained, 203 (20.6%) showed bacterial growth on the selective medium. Of the 235 strains isolated, 217 were identified as E. coli (92%), eight as Klebsiella pneumoniae (3%), three as Proteus mirabilis (1%) and three as Enterobacter cloacae (1%). MLST analysis of E. coli isolates showed the presence of ST156, ST5470, ST354, ST155, and ST3224. The phenotypic tests revealed that 43.5, 28.5, and 20.5% of the strains were ampC, ESBL, and ampC/ESBL producers, respectively. The putative TEM gene was detected in 83% of the isolates, SHV in 20%, CTX-M in 53% and CMY ampC β-lactamase gene in 65%. Our study showed that chicken farms in Lebanon are reservoirs of ESBL and AmpC producing Gram-negative bacilli. The level of antibiotic consumption in the Lebanese veterinary medicine should be evaluated. Future studies should focus on the risk factors associated with the acquisition of multi-drug-resistant organisms in farm animals in Lebanon

    Carriage of beta-lactamase-producing Enterobacteriaceae among nursing home residents in north Lebanon

    Get PDF
    Background: Multidrug-resistant (MDR) Enterobacteriaceae can cause severe infections with high morbidity, mortality, and health care costs. Individuals can be fecal carriers of these resistant organisms. Data on the extent of MDR Enterobacteriaceae fecal carriage in the community setting in Lebanon are very scarce. The aim of this study was to investigate the fecal carriage of MDR Enterobacteriaceae among the elderly residents of two nursing homes located in north Lebanon. Methods: Over a period of 4 months, five fecal swab samples were collected from each of 68 elderly persons at regular intervals of 3–4 weeks. Fecal swabs were subcultured on selective media for the screening of resistant organisms. The phenotypic detection of extended-spectrum beta-lactamase (ESBL), AmpC, metallo-beta-lactamase (MBL), and Klebsiella pneumoniae carbapenemase (KPC) production was performed using the beta-lactamase inhibitors ethylenediaminetetraacetic acid, phenylboronic acid, and cloxacillin. A temocillin disk was used for OXA-48. Multiplex PCRs were used for the genotypic detection of ESBL and carbapenemase genes, and sequencing was performed to identify CTX-M-15. The medical records of each subject were reviewed on a regular basis in order to assess the risk factors associated with MDR Enterobacteriaceae fecal carriage. Results: Over the study period, 76.5% of the recruited elderly persons were at least one-time carriers. A total of 178 isolates were obtained. Phenotypic testing revealed that 91.5% of them were ESBL producers, 4% were AmpC producers, 2.8% were co-producers of ESBL and AmpC, and 1.7% were co-producers of OXA-48 and ESBL. Recent antibiotic intake was found to be the only independent risk factor associated with the fecal carriage of MDR Enterobacteriaceae. Conclusions: The high prevalence of MDR Enterobacteriaceae detected in this study and the emergence of carbapenem resistance is alarming. Efficient infection control measures and antibiotic stewardship programs are urgently needed in these settings in order to limit the spread of resistant strains
    corecore