43 research outputs found

    Marylosides A-G, Norcycloartane Glycosides from Leaves of Cymbidium Great Flower ‘Marylaurencin’

    Get PDF
    Seven novel norcycloartane glycosides, maryloside A–G (1–7), were isolated from the leaves of Cymbidium Great Flower ‘Marylaurencin’, along with a known norcycloartane glycoside, cymbidoside (8). These structures were determined on the basis of mainly NMR experiments as well as chemical degradation and X-ray crystallographic analysis. The isolated compounds (1–6 and 8) were evaluated for the inhibitory activity on lipopolysaccharide (LPS) and interferon-γ (IFN-γ)-stimulated nitric oxide (NO) production in RAW 264.7 cells. Consequently, 1 and 3 exhibited moderate activity

    Antitumor effects of 2-oxoglutarate through inhibition of angiogenesis in a murine tumor model

    Get PDF
    Hypoxia-inducible factor 1 (HIF-1) plays essential roles in tumor angiogenesis and growth by regulating the transcription of several key genes in response to hypoxic stress and growth factors. HIF-1 is a heterodimeric transcriptional activator consisting of inducible α and constitutive β subunits. In oxygenated cells, proteins containing the prolyl hydroxylase domain (PHD) directly sense intracellular oxygen concentrations. PHDs tag HIF-1α subunits for polyubiquitination and proteasomal degradation by prolyl hydroxylation using 2-oxoglutarate (2-OX) and dioxygen. Our recent studies showed that 2-OX reduces HIF-1α, erythropoietin, and vascular endothelial growth factor (VEGF) expression in the hepatoma cell line Hep3B when under hypoxic conditions in vitro. Here, we report that similar results were obtained in Lewis lung cancer (LLC) cells in in vitro studies. Furthermore, 2-OX showed potent antitumor effects in a mouse dorsal air sac assay and a murine tumor xenograft model. In the dorsal air sac assay, 2-OX reduced the numbers of newly formed vessels induced by LLC cells. In a murine tumor xenograft model, intraperitoneal injection of 2-OX significantly inhibited tumor growth and angiogenesis in tumor tissues. Moreover, 5-fluorouracil combined with 2-OX significantly inhibited tumor growth in this model, which was accompanied by reduction of Vegf gene expression and inhibited angiogenesis in tumor tissues. These results suggest that 2-OX is a promising anti-angiogenic therapeutic agent

    SORL1 Is Genetically Associated with Late-Onset Alzheimer’s Disease in Japanese, Koreans and Caucasians

    Get PDF
    To discover susceptibility genes of late-onset Alzheimer’s disease (LOAD), we conducted a 3-stage genome-wide association study (GWAS) using three populations: Japanese from the Japanese Genetic Consortium for Alzheimer Disease (JGSCAD), Koreans, and Caucasians from the Alzheimer Disease Genetic Consortium (ADGC). In Stage 1, we evaluated data for 5,877,918 genotyped and imputed SNPs in Japanese cases (n = 1,008) and controls (n = 1,016). Genome-wide significance was observed with 12 SNPs in the APOE region. Seven SNPs from other distinct regions with p-values ,261025 were genotyped in a second Japanese sample (885 cases, 985 controls), and evidence of association was confirmed for one SORL1 SNP (rs3781834, P=7.3361027 in the combined sample). Subsequent analysis combining results for several SORL1 SNPs in the Japanese, Korean (339 cases, 1,129 controls) and Caucasians (11,840 AD cases, 10,931 controls) revealed genome wide significance with rs11218343 (P=1.7761029) and rs3781834 (P=1.0461028). SNPs in previously established AD loci in Caucasians showed strong evidence of association in Japanese including rs3851179 near PICALM (P=1.7161025) and rs744373 near BIN1 (P = 1.3961024). The associated allele for each of these SNPs was the same as in Caucasians. These data demonstrate for the first time genome-wide significance of LOAD with SORL1 and confirm the role of other known loci for LOAD in Japanese. Our study highlights the importance of examining associations in multiple ethnic populations

    Extension of the operational regime of the LHD towards a deuterium experiment

    Get PDF
    As the finalization of a hydrogen experiment towards the deuterium phase, the exploration of the best performance of hydrogen plasma was intensively performed in the large helical device. High ion and electron temperatures, Ti and Te, of more than 6 keV were simultaneously achieved by superimposing high-power electron cyclotron resonance heating onneutral beam injection (NBI) heated plasma. Although flattening of the ion temperature profile in the core region was observed during the discharges, one could avoid degradation by increasing the electron density. Another key parameter to present plasma performance is an averaged beta value β\left\langle \beta \right\rangle . The high β\left\langle \beta \right\rangle regime around 4% was extended to an order of magnitude lower than the earlier collisional regime. Impurity behaviour in hydrogen discharges with NBI heating was also classified with a wide range of edge plasma parameters. The existence of a no impurity accumulation regime, where the high performance plasma is maintained with high power heating  >10 MW, was identified. Wide parameter scan experiments suggest that the toroidal rotation and the turbulence are the candidates for expelling impurities from the core region

    Transcription Factor Homeobox D9 Drives the Malignant Phenotype of HPV18-Positive Cervical Cancer Cells via Binding to the Viral Early Promoter

    No full text
    Persistent infections with two types of human papillomaviruses (HPV), HPV16 and HPV18, are the most common cause of cervical cancer (CC). Two viral early genes, E6 and E7, are associated with tumor development, and expressions of E6 and E7 are primarily regulated by a single viral promoter: P97 in HPV16 and P105 in HPV18. We previously demonstrated that the homeobox D9 (HOXD9) transcription factor is responsible for the malignancy of HPV16-positive CC cell lines via binding to the P97 promoter. Here, we investigated whether HOXD9 is also involved in the regulation of the P105 promoter using two HPV18-positive CC cell lines, SKG-I and HeLa. Following the HOXD9 knockdown, cell viability was significantly reduced, and E6 expression was suppressed and was accompanied by increased protein levels of P53, while mRNA levels of TP53 did not change. E7 expression was also downregulated and, while mRNA levels of RB1 and E2F were unchanged, mRNA levels of E2F-target genes, MCM2 and PCNA, were decreased, which indicates that the HOXD9 knockdown downregulates E7 expression, thus leading to an inactivation of E2F and the cell-cycle arrest. Chromatin immunoprecipitation and promoter reporter assays confirmed that HOXD9 is directly associated with the P105 promoter. Collectively, our results reveal that HOXD9 drives the HPV18 early promoter activity to promote proliferation and immortalization of the CC cells
    corecore