15 research outputs found

    ACS Omega

    Get PDF
    Neurotensin receptor 2 (NTS) is a well-known mediator of central opioid-independent analgesia. Seminal studies have highlighted NTS overexpression in a variety of tumors including prostate cancer, pancreas adenocarcinoma, and breast cancer. Herein, we describe the first radiometalated neurotensin analogue targeting NTS. JMV 7488 (DOTA-(βAla)-Lys-Lys-Pro-(D)Trp-Ile-TMSAla-OH) was prepared using solid-phase peptide synthesis, then purified, radiolabeled with Ga and In, and investigated on HT-29 cells and MCF-7 cells, respectively, and on HT-29 xenografts. [Ga]Ga-JMV 7488 and [In]In-JMV 7488 were quite hydrophilic (logD = -3.1 ± 0.2 and -2.7 ± 0.2, respectively, < 0.0001). Saturation binding studies showed good affinity toward NTS ( = 38 ± 17 nM for [Ga]Ga-JMV 7488 on HT-29 and 36 ± 10 nM on MCF-7 cells; = 36 ± 4 nM for [In]In-JMV 7488 on HT-29 and 46 ± 1 nM on MCF-7 cells) and good selectivity (no NTS binding up to 500 nM). On cell-based evaluation, [Ga]Ga-JMV 7488 and [In]In-JMV 7488 showed high and fast NTS-mediated internalization of 24 ± 5 and 25 ± 11% at 1 h for [In]In-JMV 7488, respectively, along with low NTS-membrane binding (<8%). Efflux was as high as 66 ± 9% at 45 min for [Ga]Ga-JMV 7488 on HT-29 and increased for [In]In-JMV 7488 up to 73 ± 16% on HT-29 and 78 ± 9% on MCF-7 cells at 2 h. Maximum intracellular calcium mobilization of JMV 7488 was 91 ± 11% to that of levocabastine, a known NTS agonist on HT-29 cells demonstrating the agonist behavior of JMV 7488. In nude mice bearing HT-29 xenograft, [Ga]Ga-JMV 7488 showed a moderate but promising significant tumor uptake in biodistribution studies that competes well with other nonmetalated radiotracers targeting NTS. Significant uptake was also depicted in lungs. Interestingly, mice prostate also demonstrated [Ga]Ga-JMV 7488 uptake although the mechanism was not NTS-mediated

    Vaccination with human anti-trastuzumab anti-idiotype scFv reverses HER2 immunological tolerance and induces tumor immunity in MMTV.f.huHER2(Fo5) mice

    Get PDF
    International audienceINTRODUCTION: Novel adjuvant therapies are needed to prevent metastatic relapses in HER2-expressing breast cancer. Here, we tested whether trastuzumab-selected single-chain Fv (scFv) could be used to develop an anti-idiotype-based vaccine to inhibit growth of HER2-positive tumor cells in vitro and in vivo through induction of long-lasting HER-specific immunity. METHODS: BALB/c mice were immunized with anti-trastuzumab anti-idiotype (anti-Id) scFv (scFv40 and scFv69), which mimic human HER2. Their sera were assessed for the presence of HER2-specific Ab1' antibodies and for their ability to reduce viability of SK-OV-3 cells, a HER2-positive cancer cell line, in nude mice. MMTV.f.huHER2(Fo5) transgenic mice were immunized with scFv40 and scFv69 and, then, growth inhibition of spontaneous HER2-positive mammary tumors, humoral response, antibody isotype as well as splenocyte secretion of IL2 and IFN-γ were evaluated. RESULTS: Adoptively-transferred sera from BALB/c mice immunized with scFv40 and scFv69 contain anti-HER2 Ab1' antibodies that can efficiently inhibit growth of SK-OV-3 cell tumors in nude mice. Similarly, prophylactic vaccination with anti-Id scFv69 fully protects virgin or primiparous FVB-MMTV.f.huHER2(Fo5) females from developing spontaneous mammary tumors. Moreover, such vaccination elicits an anti-HER2 Ab1' immune response together with a scFv69-specific Th1 response with IL2 and IFN-γ cytokine secretion. CONCLUSIONS: Anti-trastuzumab anti-Id scFv69, used as a therapeutic or prophylactic vaccine, protects mice from developing HER2-positive mammary tumors by inducing both anti-HER2 Ab1' antibody production and an anti-HER2 Th2-dependent immune response. These results suggest that scFv69 could be used as an anti-Id-based vaccine for adjuvant therapy of patients with HER2-positive tumors to reverse immunological tolerance to HER2

    Acute and Chronic Models of Hyperglycemia in Zebrafish: A Method to Assess the Impact of Hyperglycemia on Neurogenesis and the Biodistribution of Radiolabeled Molecules

    No full text
    International audienceHyperglycemia is a major health issue that leads to cardiovascular and cerebral dysfunction. For instance, it is associated with increased neurological problems after stroke and is shown to impair neurogenic processes. Interestingly, the adult zebrafish has recently emerged as a relevant and useful model to mimic hyperglycemia/diabetes and to investigate constitutive and regenerative neurogenesis. This work provides methods to develop zebrafish models of hyperglycemia to explore the impact of hyperglycemia on brain cell proliferation under homeostatic and brain repair conditions. Acute hyperglycemia is established using the intraperitoneal injection of D-glucose (2.5 g/kg bodyweight) into adult zebrafish. Chronic hyperglycemia is induced by immersing adult zebrafish in D-glucose (111 mM) containing water for 14 days. Blood-glucose-level measurements are described for these different approaches. Methods to investigate the impact of hyperglycemia on constitutive and regenerative neurogenesis, by describing the mechanical injury of the telencephalon, dissecting the brain, paraffin embedding and sectioning with a microtome, and performing immunohistochemistry procedures, are demonstrated. Finally, the method of using zebrafish as a relevant model for studying the biodistribution of radiolabeled molecules (here,[18F]-FDG) using PET/CT is also described

    Caffeic Acid, One of the Major Phenolic Acids of the Medicinal Plant Antirhea borbonica, Reduces Renal Tubulointerstitial Fibrosis

    No full text
    International audienceThe renal fibrotic process is characterized by a chronic inflammatory state and oxidative stress. Antirhea borbonica (A. borbonica) is a French medicinal plant found in Reunion Island and known for its antioxidant and anti-inflammatory activities mostly related to its high polyphenols content. We investigated whether oral administration of polyphenol-rich extract from A. borbonica could exert in vivo a curative anti-renal fibrosis effect. To this aim, three days after unilateral ureteral obstruction (UUO), mice were daily orally treated either with a non-toxic dose of polyphenol-rich extract from A. borbonica or with caffeic acid (CA) for 5 days. The polyphenol-rich extract from A. borbonica, as well as CA, the predominant phenolic acid of this medicinal plant, exerted a nephroprotective effect through the reduction in the three phases of the fibrotic process: (i) macrophage infiltration, (ii) myofibroblast appearance and (iii) extracellular matrix accumulation. These effects were associated with the mRNA down-regulation of Tgf-β, Tnf-α, Mcp1 and NfkB, as well as the upregulation of Nrf2. Importantly, we observed an increased antioxidant enzyme activity for GPX and Cu/ZnSOD. Last but not least, desorption electrospray ionization-high resolution/mass spectrometry (DESI-HR/MS) imaging allowed us to visualize, for the first time, CA in the kidney tissue. The present study demonstrates that polyphenol-rich extract from A. borbonica significantly improves, in a curative way, renal tubulointerstitial fibrosis progression in the UUO mouse mode

    : RIP140 in colon cancer

    No full text
    International audienceDeregulation of the Wnt/APC/β-catenin signaling pathway is an important consequence of tumor suppressor APC dysfunction. Genetic and molecular data have established that disruption of this pathway contributes to the development of colorectal cancer. Here, we demonstrate that the transcriptional coregulator RIP140 regulates intestinal homeostasis and tumorigenesis. Using Rip140-null mice and mice overexpressing human RIP140, we found that RIP140 inhibited intestinal epithelial cell proliferation and apoptosis. Interestingly, following whole-body irradiation, mice lacking RIP140 exhibited improved regenerative capacity in the intestine, while mice overexpressing RIP140 displayed reduced recovery. Enhanced RIP140 expression strongly repressed human colon cancer cell proliferation in vitro and after grafting onto nude mice. Moreover, in murine tissues and human cancer cells, RIP140 stimulated APC transcription and inhibited β-catenin activation and target gene expression. Finally, RIP140 mRNA and RIP140 protein levels were decreased in human colon cancers compared with those in normal mucosal tissue, and low levels of RIP140 expression in adenocarcinomas from patients correlated with poor prognosis. Together, these results support a tumor suppressor role for RIP140 in colon cancer

    Targeting the p38 MAPK pathway inhibits irinotecan resistance in colon adenocarcinoma.: Activated p38 and chemoresistance

    No full text
    International audienceDespite recent advances in the treatment of colon cancer, tumor resistance is a frequent cause of chemotherapy failure. To better elucidate the molecular mechanisms involved in resistance to irinotecan (and its active metabolite SN38), we established SN38-resistant clones derived from HCT-116 and SW48 cell lines. These clones show various levels (6- to 60-fold) of resistance to SN-38 and display enhanced levels of activated MAPK p38 as compared with the corresponding parental cells. Because four different isoforms of p38 have been described, we then studied the effect of p38 overexpression or downregulation of each isoform on cell sensivity to SN38 and found that both α and β isoforms are involved in the development of resistance to SN38. In this line, we show that cell treatment with SB202190, which inhibits p38α and p38β, enhanced the cytotoxic activity of SN38. Moreover, p38 inhibition sensitized tumor cells derived from both SN38-sensitive and -resistant HCT116 cells to irinotecan treatment in xenograft models. Finally, we detected less phosphorylated p38 in primary colon cancer of patients sensitive to irinotecan-based treatment, compared with nonresponder patients. This indicates that enhanced level of phosphorylated p38 could predict the absence of clinical response to irinotecan. Altogether, our results show that the p38 MAPK pathway is involved in irinotecan sensitivity and suggest that phosphorylated p38 expression level could be used as a marker of clinical resistance to irinotecan. They further suggest that targeting the p38 pathway may be a potential strategy to overcome resistance to irinotecan-based chemotherapies in colorectal cancer

    Chromatin-Bound MDM2 Regulates Serine Metabolism and Redox Homeostasis Independently of p53

    No full text
    The mouse double minute 2 (MDM2) oncoprotein is recognized as a major negative regulator of the p53 tumor suppressor, but growing evidence indicates that its oncogenic activities extend beyond p53. Here, we show that MDM2 is recruited to chromatin independently of p53 to regulate a transcriptional program implicated in amino acid metabolism and redox homeostasis. Identification of MDM2 target genes at the whole-genome level highlights an important role for ATF3/4 transcription factors in tethering MDM2 to chromatin. MDM2 recruitment to chromatin is a tightly regulated process that occurs during oxidative stress and serine/glycine deprivation and is modulated by the pyruvate kinase M2 (PKM2) metabolic enzyme. Depletion of endogenous MDM2 in p53-deficient cells impairs serine/glycine metabolism, the NAD(+)/NADH ratio, and glutathione (GSH) recycling, impacting their redox state and tumorigenic potential. Collectively, our data illustrate a previously unsuspected function of chromatin-bound MDM2 in cancer cell metabolism.Riscal, Romain Schrepfer, Emilie Arena, Giuseppe Cisse, Madi Y Bellvert, Floriant Heuillet, Maud Rambow, Florian Bonneil, Eric Sabourdy, Frederique Vincent, Charles Ait-Arsa, Imade Levade, Thierry Thibaut, Pierre Marine, Jean-Christophe Portais, Jean-Charles Sarry, Jean-Emmanuel Le Cam, Laurent Linares, Laetitia K eng Research Support, Non-U.S. Gov't 2016/06/07 06:00 Mol Cell. 2016 Jun 16;62(6):890-902. doi: 10.1016/j.molcel.2016.04.033. Epub 2016 Jun 2. The mouse double minute 2 (MDM2) oncoprotein is recognized as a major negative regulator of the p53 tumor suppressor, but growing evidence indicates that its oncogenic activities extend beyond p53. Here, we show that MDM2 is recruited to chromatin independently of p53 to regulate a transcriptional program implicated in amino acid metabolism and redox homeostasis. Identification of MDM2 target genes at the whole-genome level highlights an important role for ATF3/4 transcription factors in tethering MDM2 to chromatin. MDM2 recruitment to chromatin is a tightly regulated process that occurs during oxidative stress and serine/glycine deprivation and is modulated by the pyruvate kinase M2 (PKM2) metabolic enzyme. Depletion of endogenous MDM2 in p53-deficient cells impairs serine/glycine metabolism, the NAD(+)/NADH ratio, and glutathione (GSH) recycling, impacting their redox state and tumorigenic potential. Collectively, our data illustrate a previously unsuspected function of chromatin-bound MDM2 in cancer cell metabolism.status: publishe
    corecore