1,218 research outputs found

    Fate of Quasiparticle at Mott Transition and Interplay with Lifshitz Transition Studied by Correlator Projection Method

    Full text link
    Filling-control metal-insulator transition on the two-dimensional Hubbard model is investigated by using the correlator projection method, which takes into account momentum dependence of the free energy beyond the dynamical mean-field theory. The phase diagram of metals and Mott insulators is analyzed. Lifshitz transitions occur simultaneously with metal-insulator transitions at large Coulomb repulsion. On the other hand, they are separated each other for lower Coulomb repulsion, where the phase sandwiched by the Lifshitz and metal-insulator transitions appears to show violation of the Luttinger sum rule. Through the metal-insulator transition, quasiparticles retain nonzero renormalization factor and finite quasi-particle weight in the both sides of the transition. This supports that the metal-insulator transition is caused not by the vanishing renormalization factor but by the relative shift of the Fermi level into the Mott gap away from the quasiparticle band, in sharp contrast with the original dynamical mean-field theory. Charge compressibility diverges at the critical end point of the first-order Lifshitz transition at finite temperatures. The origin of the divergence is ascribed to singular momentum dependence of the quasiparticle dispersion.Comment: 24 pages including 10 figure

    Superconductivity from Flat Dispersion Designed in Doped Mott Insulators

    Full text link
    Routes to enhance superconducting instability are explored for doped Mott insulators. With the help of insights for criticalities of metal-insulator transitions, geometrical design of lattice structure is proposed to control the instability. A guideline is to explicitly make flat band dispersions near the Fermi level without suppressing two-particle channels. In a one-dimensional model, numerical studies show that our prescription with finite-ranged hoppings realizes large enhancement of spin-gap and pairing dominant regions. We also propose several multi-band systems, where the pairing is driven by intersite Coulomb repulsion.Comment: 4 pages, to be published in Phys. Rev. Let

    Possible Kondo resonance in PrFe4P12 studied by bulk-sensitive photoemission

    Full text link
    Pr 4f electronic states in Pr-based filled skutterudites PrT4X12(T=Fe and Ru; X=P and Sb) have been studied by high-resolution bulk-sensitive Pr 3d-4f resonance photoemission. A very strong spectral intensity is observed just below the Fermi level in the heavy-fermion system PrFe4P12. The increase of its intensity at lower temperatures is observed. We speculate that this is the Kondo resonance of Pr, the origin of which is attributed to the strong hybridization between the Pr 4f and the conduction electrons.Comment: 4 pages(camera ready format), 4 figures, ReVTeX

    Electronic structures of Cr1−δ_{1-\delta}X (X=S, Te) studied by Cr 2p soft x-ray magnetic circular dichroism

    Get PDF
    Cr 2p core excited XAS and XMCD spectra of ferromagnetic Cr1−δ_{1-\delta}Te with several concentrations of δ\delta=0.11-0.33 and ferrimagnetic Cr5_{5}S6_{6} have been measured. The observed XMCD lineshapes are found to very weakly depend on δ\delta for Cr1−δ_{1-\delta}Te. The experimental results are analyzed by means of a configuration-interaction cluster model calculation with consideration of hybridization and electron correlation effects. The obtained values of the spin magnetic moment by the cluster model analyses are in agreement with the results of the band structure calculation.The calculated result shows that the doped holes created by the Cr deficiency exist mainly in the Te 5porbital of Cr1−δ_{1-\delta}Te, whereas the holes are likely to be in Cr 3d state for Cr5_{5}S6_{6}.Comment: 8 pages, 6 figures, accepted for publication in Physical Review

    Insulator-Metal Transition in the One and Two-Dimensional Hubbard Models

    Full text link
    We use Quantum Monte Carlo methods to determine T=0T=0 Green functions, G(r⃗,ω)G(\vec{r}, \omega), on lattices up to 16×1616 \times 16 for the 2D Hubbard model at U/t=4U/t =4. For chemical potentials, μ\mu, within the Hubbard gap, ∣μ∣<μc |\mu | < \mu_c, and at {\it long} distances, r⃗\vec{r}, G(r⃗,ω=μ)∼e−∣r⃗∣/ξlG(\vec{r}, \omega = \mu) \sim e^{ -|\vec{r}|/\xi_l} with critical behavior: ξl∼∣μ−μc∣−ν\xi_l \sim | \mu - \mu_c |^{-\nu}, ν=0.26±0.05 \nu = 0.26 \pm 0.05. This result stands in agreement with the assumption of hyperscaling with correlation exponent ν=1/4\nu = 1/4 and dynamical exponent z=4z = 4. In contrast, the generic band insulator as well as the metal-insulator transition in the 1D Hubbard model are characterized by ν=1/2\nu = 1/2 and z=2z = 2.Comment: 9 pages (latex) and 5 postscript figures. Submitted for publication in Phys. Rev. Let

    Quantum Mott Transition and Multi-Furcating Criticality

    Full text link
    Phenomenological theory of the Mott transition is presented. When the critical temperature of the Mott transition is much higher than the quantum degeneracy temperature, the transition is essentially described by the Ising universality class. Below the critical temperature, phase separation or first-order transition occurs. However, if the critical point is involved in the Fermi degeneracy region, a marginal quantum critical point appears at zero temperature. The originally single Mott critical point generates subsequent many unstable fixed points through various Fermi surface instabilities induced by the Mott criticality characterized by the diverging charge susceptibility or doublon susceptibility. This occurs in marginal quantum-critical region. Charge, magnetic and superconducting instabilitites compete severely under these critical charge fluctuations. The quantum Mott transition triggers multi-furcating criticality, which goes beyond the conventional concept of multicriticality in quantum phase transitions. Near the quantum Mott transition, the criticality generically drives growth of inhomogeneous structure in the momentum space with singular points of flat dispersion on the Fermi surface. The singular points determine the quantum dynamics of the Mott transition by the dynamical exponent z=4z=4. We argue that many of filling-control Mott transitions are classified to this category. Recent numerical results as well as experimental results on strongly correlated systems including transition metal oxides, organic materials and 3^3He layer adsorbed on a substrate are consistently analyzed especially in two-dimensional systems.Comment: 28 pages including 2 figure

    Magnetic and Metal-Insulator Transitions through Bandwidth Control in Two-Dimensional Hubbard Models with Nearest and Next-Nearest Neighbor Transfers

    Full text link
    Numerical studies on Mott transitions caused by the control of the ratio between bandwidth and electron-electron interaction (UU) are reported. By using the recently proposed path-integral renormalization group(PIRG) algorithm, physical properties near the transitions in the ground state of two-dimensional half-filled models with the nearest and the next-nearest neighbor transfers (−t-t and t′t', respectively) are studied as a prototype of geometrically frustrated system. The nature of the bandwidth-control transitions shows sharp contrast with that of the filling-control transitions: First, the metal-insulator and magnetic transitions are separated each other and the metal-insulator (MI) transition occurs at smaller UU, although the both transition interactions UU increase with increasing t′t'. Both transitions do not contradict the first-order transitions for smaller t′/tt'/t while the MI transitions become continuous type accompanied by emergence of {\it unusual metallic phase} near the transition for large t′/tt'/t. A nonmagnetic insulator phase is stabilized between MI and AF transitions. The region of the nonmagnetic insulator becomes wider with increasing t′/tt'/t. The phase diagram naturally connects two qualitatively different limits, namely the Hartree-Fock results at small t′/tt'/t and speculations in the strong coupling Heisenberg limit.Comment: 30 pages including 20 figure

    Thermodynamic Relations in Correlated Systems

    Full text link
    Several useful thermodynamic relations are derived for metal-insulator transitions, as generalizations of the Clausius-Clapeyron and Eherenfest theorems. These relations hold in any spatial dimensions and at any temperatures. First, they relate several thermodynamic quantities to the slope of the metal-insulator phase boundary drawn in the plane of the chemical potential and the Coulomb interaction in the phase diagram of the Hubbard model. The relations impose constraints on the critical properties of the Mott transition. These thermodynamic relations are indeed confirmed to be satisfied in the cases of the one- and two-dimensional Hubbard models. One of these relations yields that at the continuous Mott transition with a diverging charge compressibility, the doublon susceptibility also diverges. The constraints on the shapes of the phase boundary containing a first-order metal-insulator transition at finite temperatures are clarified based on the thermodynamic relations. For example, the first-order phase boundary is parallel to the temperature axis asymptotically in the zero temperature limit. The applicability of the thermodynamic relations are not restricted only to the metal-insulator transition of the Hubbard model, but also hold in correlated systems with any types of phases in general. We demonstrate such examples in an extended Hubbard model with intersite Coulomb repulsion containing the charge order phase.Comment: 10 pages, 9 figure

    Large magnetic circular dichroism in resonant inelastic x-ray scattering at the Mn L-edge of Mn-Zn ferrite

    Full text link
    We report resonant inelastic x-ray scattering (RIXS) excited by circularly polarized x-rays on Mn-Zn ferrite at the Mn L2,3-resonances. We demonstrate that crystal field excitations, as expected for localized systems, dominate the RIXS spectra and thus their dichroic asymmetry cannot be interpreted in terms of spin-resolved partial density of states, which has been the standard approach for RIXS dichroism. We observe large dichroic RIXS at the L2-resonance which we attribute to the absence of metallic core hole screening in the insulating Mn-ferrite. On the other hand, reduced L3-RIXS dichroism is interpreted as an effect of longer scattering time that enables spin-lattice core hole relaxation via magnons and phonons occurring on a femtosecond time scale.Comment: 7 pages, 2 figures, http://link.aps.org/doi/10.1103/PhysRevB.74.17240
    • …
    corecore