494 research outputs found

    Prediction of monthly Arctic sea ice concentrations using satellite and reanalysis data based on convolutional neural networks

    Get PDF
    Changes in Arctic sea ice affect atmospheric circulation, ocean current, and polar ecosystems. There have been unprecedented decreases in the amount of Arctic sea ice due to global warming. In this study, a novel 1-month sea ice concentration (SIC) prediction model is proposed, with eight predictors using a deep-learning approach, convolutional neural networks (CNNs). This monthly SIC prediction model based on CNNs is shown to perform better predictions (mean absolute error - MAE - of 2.28 %, anomaly correlation coefficient - ACC - of 0.98, root-mean-square error - RMSE - of 5.76 %, normalized RMSE - nRMSE - of 16.15 %, and NSE - Nash-Sutcliffe efficiency - of 0.97) than a random-forest-based (RF-based) model (MAE of 2.45 %, ACC of 0.98, RMSE of 6.61 %, nRMSE of 18.64 %, and NSE of 0.96) and the persistence model based on the monthly trend (MAE of 4.31 %, ACC of 0.95, RMSE of 10.54 %, nRMSE of 29.17 %, and NSE of 0.89) through hindcast validations. The spatio-temporal analysis also confirmed the superiority of the CNN model. The CNN model showed good SIC prediction results in extreme cases that recorded unforeseen sea ice plummets in 2007 and 2012 with RMSEs of less than 5.0 %. This study also examined the importance of the input variables through a sensitivity analysis. In both the CNN and RF models, the variables of past SICs were identified as the most sensitive factor in predicting SICs. For both models, the SIC-related variables generally contributed more to predict SICs over ice-covered areas, while other meteorological and oceanographic variables were more sensitive to the prediction of SICs in marginal ice zones. The proposed 1-month SIC prediction model provides valuable information which can be used in various applications, such as Arctic shipping-route planning, management of the fishing industry, and long-term sea ice forecasting and dynamics

    Structure of Osh3 Reveals a Conserved Mode of Phosphoinositide Binding in Oxysterol-Binding Proteins

    Get PDF
    SummaryThe oxysterol-binding protein (OSBP)-related proteins (ORPs) are conserved from yeast to humans, and implicated in the regulation of lipid homeostasis and in signaling pathways. Saccharomyces cerevisiae has seven ORPs (Osh1–Osh7) that share one unknown essential function. Here, we report the 1.5–2.3 Å structures of the PH domain and ORD (OSBP-related domain) of yeast Osh3 in apo-form or in complex with phosphatidylinositol 4-phosphate (PI[4]P). Osh3 recognizes PI(4)P by the highly conserved residues in the tunnel of ORD whereas it lacks sterol binding due to the narrow hydrophobic tunnel. Yeast complementation tests suggest that PI(4)P binding to PH and ORD is essential for function. This study suggests that the unifying feature in all ORP homologs is the binding of PI(4)P to ORD and sterol binding is additional to certain homologs. Structural modeling of full-length Osh3 is consistent with the concept that Osh3 is a lipid transfer protein or regulator in membrane contact sites

    Quaternary semiconductor Cu2FeSnS4 nanoparticles as an alternative to Pt catalysts

    Get PDF
    We demonstrate an N719 dye sensitized solar cell based on Cu 2FeSnS4 (CFTS) as a counter electrode. The elements for the material are all earth abundant and environmentally benign. The power conversion efficiency of a DSSC using CFTS was comparable to that of a DSSC using Pt under A.M. 1.5G (100 mW cm-2).close3

    Dissociating stable nitrogen molecules under mild conditions by cyclic strain engineering

    Get PDF
    All quiet on the nitrogen front. The dissociation of stable diatomic nitrogen molecules (N-2) is one of the most challenging tasks in the scientific community and currently requires both high pressure and high temperature. Here, we demonstrate that N-2 can be dissociated under mild conditions by cyclic strain engineering. The method can be performed at a critical reaction pressure of less than 1 bar, and the temperature of the reaction container is only 40 degrees C. When graphite was used as a dissociated N* receptor, the normalized loading of N to C reached as high as 16.3 at/at %. Such efficient nitrogen dissociation is induced by the cyclic loading and unloading mechanical strain, which has the effect of altering the binding energy of N, facilitating adsorption in the strain-free stage and desorption in the compressive strain stage. Our finding may lead to opportunities for the direct synthesis of N-containing compounds from N-2

    Mind bomb 1 in the lymphopoietic niches is essential for T and marginal zone B cell development

    Get PDF
    Notch signaling regulates lineage decisions at multiple stages of lymphocyte development, and Notch activation requires the endocytosis of Notch ligands in the signal-sending cells. Four E3 ubiquitin ligases, Mind bomb (Mib) 1, Mib2, Neuralized (Neur) 1, and Neur2, regulate the Notch ligands to activate Notch signaling, but their roles in lymphocyte development have not been defined. We show that Mib1 regulates T and marginal zone B (MZB) cell development in the lymphopoietic niches. Inactivation of the Mib1 gene, but not the other E3 ligases, Mib2, Neur1, and Neur2, abrogated T and MZB cell development. Reciprocal bone marrow (BM) transplantation experiments revealed that Mib1 in the thymic and splenic niches is essential for T and MZB cell development. Interestingly, when BM cells from transgenic Notch reporter mice were transplanted into Mib1-null mice, the Notch signaling was abolished in the double-negative thymocytes. In addition, the endocytosis of Dll1 was impaired in the Mib1-null microenvironment. Moreover, the block in T cell development and the failure of Dll1 endocytosis were also observed in coculture system by Mib1 knockdown. Our study reveals that Mib1 is the essential E3 ligase in T and MZB cell development, through the regulation of Notch ligands in the thymic and splenic microenvironments

    Mind Bomb 1-Expressing Intermediate Progenitors Generate Notch Signaling to Maintain Radial Glial Cells

    Get PDF
    SummaryNotch signaling is critical for the stemness of radial glial cells (RGCs) during embryonic neurogenesis. Although Notch-signal-receiving events in RGCs have been well characterized, the signal-sending mechanism by the adjacent cells is poorly understood. Here, we report that conditional inactivation of mind bomb-1 (mib1), an essential component for Notch ligand endocytosis, in mice using the nestin and hGFAP promoters resulted in complete loss of Notch activation, which leads to depletion of RGCs, and premature differentiation into intermediate progenitors (IPs) and finally neurons, which were reverted by the introduction of active Notch1. Interestingly, Mib1 expression is restricted in the migrating IPs and newborn neurons, but not in RGCs. Moreover, sorted Mib1+ IPs and neurons can send the Notch signal to neighboring cells. Our results reveal that not only newborn neurons but also IPs are essential Notch-ligand-presenting cells for maintaining RGC stemness during both symmetric and asymmetric divisions

    A Case of Hypertrophic Cranial Pachymeningitis Presenting with Scleritis in a Patient with Undifferentiated Connective Tissue Disease

    Get PDF
    Hypertrophic cranial pachymeningitis (HCP) is an uncommon disorder that causes a localized or diffuse thickening of the dura mater and has been reported to be infrequently associated with systemic autoimmune disorders such as Wegener's granulomatosis, rheumatoid arthritis, sarcoidosis, Behçet's disease, Sjögren syndrome, and temporal arteritis. Here, we report a case of HCP initially presented with scleritis and headache in a patient with undifferenciated connective tissue disease (UCTD). HCP was initially suspected on brain magnetic resonance imaging and defined pathologically on meningial biopsy. Immunologic studies showed the presence of anti-RNP antibody. After high dose corticosteroid therapy, the patient's symptoms and radiologic abnormalities of brain were improved. Our case suggested that HCP should be considered in the differential diagnosis of headache in a patient with UCTD presenting with scleritis

    3D Graphics System with VLIW Processor for Geometry Acceleration

    Get PDF
    Abstract To process enormous 3D data, we have designed a VLIW (Very Long Instruction Word
    corecore