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Abstract 
To process enormous 3D data, we have designed a VLIW 

(Very Long Instruction Word) processor called FLOVA 
(Floating-Point VLIW Architecture) exploiting the ILP (Instr- 
uction-Level Parallelism) in 3D programs. This paper pres- 
ents FGA (FLOVA Geometry Accelerator) that is the 3D 
graphics system and it almost removes the time required to 
process the geometry stage. We have developed the 3D grap- 
hics library, FGA-GL, to supports the FGA system. The defer- 
red primitive rendering algorithm of FGA-GL enables the ge- 
ometry processing of the primitive data to be done concur- 
rently with the host job such as primitive data management or 
game play. FGA improves the average performance of 3D gr- 
aphics system by 2.5-3.0. 

        
I. INTRODUCTION  

The 3D polygonal graphics pipeline is composed of three 
main stages: primitive data management, geometry stage, and 
rendering stage. High-end 3D graphics accelerators provide 
dedicated hardware to accelerate the geometry stage but low-
end cards generally delegate them to the software. Several 
technologies were developed to accelerate the geometry stage 
because current CPU cannot keep pace with the latest low-end 
3D graphics accelerators[1][2][3]. The parallel processors or 
SMP computers are used to process the geometry stage in 
[4][5]. The PMesa uses shared memory parallel processors to 
process the geometry stage. The frequent change of the global 
context and the thread synchronization decreases the 
performance of PMesa. SIMD instructions are added to the 
host processor to accelerate the geometry stage[6][7]. 
Although the geometry processing is accelerated by SIMD 
instructions, the host processor must do not only the geometry 
processing but also the host job such as primitive data 
management or the execution of 3D data generation algorithm. 

We have used the independent geometry processor, FLO- 
VA (FLOating-point Vliw Architecture) that has a 4-way 
VLIW architecture to accelerate the 3D graphics system of PC. 
The 3D geometry data have inherent parallelism as pointed 
out in [8] and thus the algorithms of geometry processing can 
exploit the instruction-level parallelism efficiently in FLOVA. 
The FGA (FLOVA Geometry Accelerator) system is the geo- 
metry accelerated graphics system that uses FLOVA as the ge- 
ometry engine and VoodooTM as the rendering engine. FGA-
GL (FGA Graphics Library) that has API’s similar to that of 
OpenGL is the 3D graphics library for FGA. FGA-GL can al- 
most remove the geometry processing time using deferred pri- 
mitive rendering. The deferred primitive rendering enables the 
concurrent execution of the geometry processing and the host 
job such as primitive data management or the game play. 

This paper is organized as follows. In Section II, we des- 
cribe the deferred primitive rendering algorithm. The archi- 
tecture of VLIW geometry processor is explained in Section 

III and the experimental results are shown in Section IV.  
Section V concludes the paper. 

            
II. FGA-GL WITH DEFERRED PRMITIVE 

RENDERING 
The graphics library for our geometry acceleration system 

uses a standard OpenGLTM API’s and there is no need to re- 
write 3D applications to use our library. We have modified 
Mesa that is a public domain implementation of OpenGL [9] 
[10]. The deferred primitive rendering that almost removes 
the geometry processing time is implemented in our graphics 
library, FGA-GL. 

The traditional OpenGL graphics pipeline in PC is shown in 
Fig. 1. Pi means the i-th primitive array that is a set of pri- 
mitives to be drawn. Ci means the “state” of the OpenGL and 
it is the geometry and the rendering context. Before any pri- 
mitive array is sent to the rendering engine, the state must be 
set to represent the suitable context. The state is set by the se-
quence of API’s and the behavior of one API command is aff- 
ected by the previous API commands. Most of the OpenGL 
API’s are to change the state and only small part is to specify 
primitives. “Set Ci” in Fig. 1. means the execution of the 
API’s that change the state of the i-th primitive array. G(Ci, 
Pi) is the geometry processing of Pi using the context Ci. At 
the geometry stage, the primitives are transformed and lit by 
the light sources. The time required for G(Ci, Pi) is over 70-
80% of the total graphics pipeline according to 3D application 
benchmarks. R(Ci, GPi) is the rendering of the primitives 
whose geometry processing is ended. R(Ci, GPi) is usually 
done on the dedicated rendering hardware like VoodooTM and 
the time required for the rendering is under 10%. 
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Fig. 1. The traditional OpenGL graphics pipeline in PC. 
 
The state is saved as a structure of C language in Mesa. We 

have classified the state Ci into the geometry state, GCi and 
rendering state, RCi. The API’s can also be classified into 
API’s related to geometry state, API’s related to rendering 
state, and API’s that specify the primitives as shown in Fig. 2. 
The examples of API’s related to the geometry are glMult-
Matrixf(), glTranslate(), glRotate(), glLightfv(), etc. Some of 
these API’s are to change the transformation matrix and some 
are to set the attributes of light sources. The examples of 
API’s related to rendering are glTexImage(), glAlphaFunc(), 
etc. There are API’s that are related to both the geometry and 
the rendering. The API’s that specify primitives are to set the 
coordinates in 3D space and the normal vectors of the pri- 
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mitives. The examples of such API’s are glVertex3f(), glNor- 
mal3f(), etc. 
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Fig. 2. Classification of OpenGL API’s. 

 
The algorithm of deferred primitive rendering is shown in 

Fig. 3. The dotted box is the basic granule that includes the 
rendering of (i-1)-th primitive array, change of i-th rendering 
state, host job, change of (i+1)-th geometry state and saving of 
(i+1)-th rendering state, and generation of (i+1)-th primitive. 
The geometry stage is done in VLIW geometry processor. 
The i-th primitive array, Pi is rendered after Pi+1 is generated. 
The geometry processing of Pi, i.e., G(GCi, Pi) is executed co- 
ncurrently with the host’s job. 

The state is set by API’s related to geometry or rendering. 
These API’s are called by the 3D application that does not di- 
scriminate the geometry state from the rendering state. The 
FGA-GL only set the geometry state, GCi+1 while it saves the 
rendering state, RCi+1. The RCi+1 must be saved as in Fig. 3 
because it should be set after the primitive Pi is rendered. The 
rendering state is saved as a list and the execution time for 
saving the rendering state is not considerable. If the geometry 
processing is not ended even after Pi+1 generation, the host 
waits for FGA to end the geometry processing. 

Fig. 4 shows the comparison of traditional graphics system 
(TGS) which is the 3D graphics system without FGA and 
FGA-GL. The geometry processing in TGS occupies most of 
the total execution time of 3D graphics pipeline, whereas that 
in FGA-GL is hidden due to parallel execution with host jobs. 
 

III. VLIW GEOMETRY PROCESSOR 
The geometry processor on the FGA board has a 4-way 

VLIW architecture called FLOVA with 13 functional units 
[11][12]. It consists of a branch/program control unit, three 
integer ALU’s, an integer multiplier, a shift unit, two load/ 
store units, three floating-point units, media ALU and multi- 
plier. FLOVA has an instruction cache of 8KB, two data 
memories of 16KB and several peripherals like DMA, PCI,  

 
 

TIMER, and so on.  The overall block diagram of FLOVA is 
shown in Fig. 5.  
 

 
Fig. 4. Comparison of the total execution time per frame 
in the TGS and FGA-GL 
 

 
Fig. 5. The block diagram of FLOVA. 

 
An instruction cache contains the compressed FLOVA 
instruction words without padding NOP’s. The register file 
with 64 entries has eight read-ports and four write-ports and 
can be accessed as 32-bit or 64-bit register. When two single-
precision floating-point operations or integer operations are       
executed, the register file is accessed as 32-bit, while in doub-  
le-precision floating-point operations or media operations, it 
is accessed as 64-bit. 

 
 Fig. 3. Algorithm of deferred primitive rendering.
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To accommodate a wide variety of multimedia applications, 
FLOVA supports rich packed 64-bit data types such as 8 pac-
ked bytes, 4 packed words, 2 packed doublewords and 2 
single precision floating-point. Each element within a packed 
data type is a fixed-point integer. To enable a wide variety of 
image algorithms, FLOVA supports packed bytes. Basic 
support for packed doubleword data types is needed for oper- 
ations that need higher precision than 16 bits and a variety of 
3D graphics algorithms. A major feature of FLOVA instruc-                    
tions using rich data types is saturation arithmetic operations. 
These operations are very important, for example, in algori- 
thms dealing with visual data such as 3D game implementing 
a Gouraud-shading technique. If the saturation operations are 
not supported, the complex saturation check routines need to 
be implemented with the branch instructions using carry or 
overflow flag, which significantly increases the execution 
cycle count.  

FLOVA has three floating-point units that consist of an 
floating-points ALU, an floating-point multiplier, and 
floating-point reciprocal unit.  

The floating-point multiplier (FMUL) has a special logic 
that computes the power operation for the lighting of the 
vertex based on piecewise linear approximation and multipli- 
cation. This special logic is called “Fastpow” which consists 
of two 32-bit carry-save adders and is easily merged in the 
floating-point multiplier to use internal 24x24 multiplier for 
fixed-point multiplication. The detailed operation of the “Fas- 
tpow” is described in [11][13]. It computes the floating-point 
power operation with only 4 cycles while it takes over 150 cy- 
cles or requires a large ROM table in other processors while 
the difference of power value generated by the “Fastpow” and 
SPARC is under 5%. The overall block diagram of the FMUL 
with “Fastpow” logic is shown in Fig. 6. 
 

 
 

Fig. 6. The block diagram of FMUL. 
 
The floating-point reciprocal unit can compute the recipro-

cal operation of the floating-point number with 8-bit precision. 
The 8-bit precision is sufficient for 3D graphics application. If 
the programmer wants more precision, the Newton-Raphson 
iteration method can be used to increase the accuracy. 

The geometry code composed of FLOVA instructions is 
highly parallelized into four execution slots. To improve the 
parallelism of the lighting stage, we have used “paired lights” 
which compute the lighting of the vertex for two light sources 

concurrently. 
 

IV. PERFORMANCE 
TG and TNG is the geometry processing time and other time 

except geometry processing of the normal graphics system. TC 
is the communication overhead by the interaction between 
host and FGA and TFG is the geometry processing time con- 
sumed in the geometry processor. The theoretical performance 
improvement of FGA is as follows.  
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The experiments show that TFG is usually smaller than TNG 

and TC is 0.1 TG. - 0.3 TG. Fig. 7 shows the experimental 
results of the performance of FGA for several benchmarks. 
The average of performance improvement against the normal 
graphics system without FGA is 2.5.  

Fig. 8 shows the performance improvement as the light of 
the scene is increased. The lighting stage stands for 70% of 
the geometry processing time and we have optimized the 
lighting stage using the parallel execution of the FLOVA. The 
performance of FGA is better when more lights are used. 

 
 

 
 

Fig. 7. The performance improvement of FGA. 
 

Fig. 9 shows the layout of FLOVA. The estimated chip size 
of FLOVA processor consisting of about 650,000 gates, is 
10mm × 10mm under 0.35µ.m TLM CBIC process, and 
performance is 2100 MOPS (Million Operations Per Second) 
/ 500 MFLOPS (Million Floating-point Operations Per Se- 
cond) at 100 MHz clock frequency.  

FGA system board is shown in Fig. 10. It consists of 
SRAM, Board controller, and FLOVA. We have developed 
FGA system board as a PC add-on card and have used PCI 
interface for the communication between FGA and Host. 



 
Fig. 8. The performance improvement of FGA as the num- 
ber of lights is increased. 
 
 

 
 

Fig. 9. The layout of FLOVA. 
 
 

 
 

Fig. 10. The FGA system board that consists of SRAM, 
Board controller, and FLOVA. 
 
 

V. CONCLUSIONS 
We have designed the FGA that is the geometry accelerated 

graphics system using VLIW geometry processor called 
FLOVA and FGA-GL, which is the 3D graphics library for 
FGA. The deferred primitive rendering of FGA-GL enables 
the concurrent processing of the host job and the geometry 
processing and thus it almost removes the time required for 
the geometry processing in 3D graphics pipeline. The FLOVA 
can execute the geometry stage very efficiently with the fast 
lighting unit and two operation modes for the transformation 
in the geometry stage. FGA improves the average 
performance of 3D graphics system by 2.5-3.0.  
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