
3D Graphics System with VLIW Processor for Geometry Acceleration
Young-Wook Jeon*, Young-Su Kwon*, Yeon-Ho Im*, Jun-Hee Lee*,

Sang-Joon Nam**, Byung-Woon Kim*, and Chong-Min Kyung*
**MCU design team 4, System IC, Hyundai Electronics Industries

*Dept. of Electrical Engineering and Computer Science, KAIST, Taejon 120-749,Korea
E-mail: woogy@vslab.kaist.ac.kr

Abstract
To process enormous 3D data, we have designed a VLIW

(Very Long Instruction Word) processor called FLOVA
(Floating-Point VLIW Architecture) exploiting the ILP (Instr-
uction-Level Parallelism) in 3D programs. This paper pres-
ents FGA (FLOVA Geometry Accelerator) that is the 3D
graphics system and it almost removes the time required to
process the geometry stage. We have developed the 3D grap-
hics library, FGA-GL, to supports the FGA system. The defer-
red primitive rendering algorithm of FGA-GL enables the ge-
ometry processing of the primitive data to be done concur-
rently with the host job such as primitive data management or
game play. FGA improves the average performance of 3D gr-
aphics system by 2.5-3.0.

I. INTRODUCTION

The 3D polygonal graphics pipeline is composed of three
main stages: primitive data management, geometry stage, and
rendering stage. High-end 3D graphics accelerators provide
dedicated hardware to accelerate the geometry stage but low-
end cards generally delegate them to the software. Several
technologies were developed to accelerate the geometry stage
because current CPU cannot keep pace with the latest low-end
3D graphics accelerators[1][2][3]. The parallel processors or
SMP computers are used to process the geometry stage in
[4][5]. The PMesa uses shared memory parallel processors to
process the geometry stage. The frequent change of the global
context and the thread synchronization decreases the
performance of PMesa. SIMD instructions are added to the
host processor to accelerate the geometry stage[6][7].
Although the geometry processing is accelerated by SIMD
instructions, the host processor must do not only the geometry
processing but also the host job such as primitive data
management or the execution of 3D data generation algorithm.

We have used the independent geometry processor, FLO-
VA (FLOating-point Vliw Architecture) that has a 4-way
VLIW architecture to accelerate the 3D graphics system of PC.
The 3D geometry data have inherent parallelism as pointed
out in [8] and thus the algorithms of geometry processing can
exploit the instruction-level parallelism efficiently in FLOVA.
The FGA (FLOVA Geometry Accelerator) system is the geo-
metry accelerated graphics system that uses FLOVA as the ge-
ometry engine and VoodooTM as the rendering engine. FGA-
GL (FGA Graphics Library) that has API’s similar to that of
OpenGL is the 3D graphics library for FGA. FGA-GL can al-
most remove the geometry processing time using deferred pri-
mitive rendering. The deferred primitive rendering enables the
concurrent execution of the geometry processing and the host
job such as primitive data management or the game play.

This paper is organized as follows. In Section II, we des-
cribe the deferred primitive rendering algorithm. The archi-
tecture of VLIW geometry processor is explained in Section

III and the experimental results are shown in Section IV.
Section V concludes the paper.

II. FGA-GL WITH DEFERRED PRMITIVE

RENDERING
The graphics library for our geometry acceleration system

uses a standard OpenGLTM API’s and there is no need to re-
write 3D applications to use our library. We have modified
Mesa that is a public domain implementation of OpenGL [9]
[10]. The deferred primitive rendering that almost removes
the geometry processing time is implemented in our graphics
library, FGA-GL.

The traditional OpenGL graphics pipeline in PC is shown in
Fig. 1. Pi means the i-th primitive array that is a set of pri-
mitives to be drawn. Ci means the “state” of the OpenGL and
it is the geometry and the rendering context. Before any pri-
mitive array is sent to the rendering engine, the state must be
set to represent the suitable context. The state is set by the se-
quence of API’s and the behavior of one API command is aff-
ected by the previous API commands. Most of the OpenGL
API’s are to change the state and only small part is to specify
primitives. “Set Ci” in Fig. 1. means the execution of the
API’s that change the state of the i-th primitive array. G(Ci,
Pi) is the geometry processing of Pi using the context Ci. At
the geometry stage, the primitives are transformed and lit by
the light sources. The time required for G(Ci, Pi) is over 70-
80% of the total graphics pipeline according to 3D application
benchmarks. R(Ci, GPi) is the rendering of the primitives
whose geometry processing is ended. R(Ci, GPi) is usually
done on the dedicated rendering hardware like VoodooTM and
the time required for the rendering is under 10%.

Set Ci
Generate

Pi
G(Ci, Pi) R(Ci, GPi)

Time

3D
algorithm

Fig. 1. The traditional OpenGL graphics pipeline in PC.

The state is saved as a structure of C language in Mesa. We

have classified the state Ci into the geometry state, GCi and
rendering state, RCi. The API’s can also be classified into
API’s related to geometry state, API’s related to rendering
state, and API’s that specify the primitives as shown in Fig. 2.
The examples of API’s related to the geometry are glMult-
Matrixf(), glTranslate(), glRotate(), glLightfv(), etc. Some of
these API’s are to change the transformation matrix and some
are to set the attributes of light sources. The examples of
API’s related to rendering are glTexImage(), glAlphaFunc(),
etc. There are API’s that are related to both the geometry and
the rendering. The API’s that specify primitives are to set the
coordinates in 3D space and the normal vectors of the pri-

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357609766?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

mitives. The examples of such API’s are glVertex3f(), glNor-
mal3f(), etc.

API’s
related to
the geometry

API’s
related to
the rendering

Mesa API’s

API’s for primitive specification

Fig. 2. Classification of OpenGL API’s.

The algorithm of deferred primitive rendering is shown in

Fig. 3. The dotted box is the basic granule that includes the
rendering of (i-1)-th primitive array, change of i-th rendering
state, host job, change of (i+1)-th geometry state and saving of
(i+1)-th rendering state, and generation of (i+1)-th primitive.
The geometry stage is done in VLIW geometry processor.
The i-th primitive array, Pi is rendered after Pi+1 is generated.
The geometry processing of Pi, i.e., G(GCi, Pi) is executed co-
ncurrently with the host’s job.

The state is set by API’s related to geometry or rendering.
These API’s are called by the 3D application that does not di-
scriminate the geometry state from the rendering state. The
FGA-GL only set the geometry state, GCi+1 while it saves the
rendering state, RCi+1. The RCi+1 must be saved as in Fig. 3
because it should be set after the primitive Pi is rendered. The
rendering state is saved as a list and the execution time for
saving the rendering state is not considerable. If the geometry
processing is not ended even after Pi+1 generation, the host
waits for FGA to end the geometry processing.

Fig. 4 shows the comparison of traditional graphics system
(TGS) which is the 3D graphics system without FGA and
FGA-GL. The geometry processing in TGS occupies most of
the total execution time of 3D graphics pipeline, whereas that
in FGA-GL is hidden due to parallel execution with host jobs.

III. VLIW GEOMETRY PROCESSOR
The geometry processor on the FGA board has a 4-way

VLIW architecture called FLOVA with 13 functional units
[11][12]. It consists of a branch/program control unit, three
integer ALU’s, an integer multiplier, a shift unit, two load/
store units, three floating-point units, media ALU and multi-
plier. FLOVA has an instruction cache of 8KB, two data
memories of 16KB and several peripherals like DMA, PCI,

TIMER, and so on. The overall block diagram of FLOVA is
shown in Fig. 5.

Fig. 4. Comparison of the total execution time per frame
in the TGS and FGA-GL

Fig. 5. The block diagram of FLOVA.

An instruction cache contains the compressed FLOVA
instruction words without padding NOP’s. The register file
with 64 entries has eight read-ports and four write-ports and
can be accessed as 32-bit or 64-bit register. When two single-
precision floating-point operations or integer operations are
executed, the register file is accessed as 32-bit, while in doub-
le-precision floating-point operations or media operations, it
is accessed as 64-bit.

 Fig. 3. Algorithm of deferred primitive rendering.

Set GCi
&

Save RCi

Generate
Pi

3D
algori-

thm
R(RCi-1, GPi-1) Set RCi+1

Set GCi+1
&

Save RCi+1

Generate
Pi+1

R(RCi, GPi)Set RCi

G(GCi-1, Pi-1) G(GCi, Pi) G(GCi+1, Pi+1)

Host FGA Voodoo

3D
algori-

thm

To accommodate a wide variety of multimedia applications,
FLOVA supports rich packed 64-bit data types such as 8 pac-
ked bytes, 4 packed words, 2 packed doublewords and 2
single precision floating-point. Each element within a packed
data type is a fixed-point integer. To enable a wide variety of
image algorithms, FLOVA supports packed bytes. Basic
support for packed doubleword data types is needed for oper-
ations that need higher precision than 16 bits and a variety of
3D graphics algorithms. A major feature of FLOVA instruc-
tions using rich data types is saturation arithmetic operations.
These operations are very important, for example, in algori-
thms dealing with visual data such as 3D game implementing
a Gouraud-shading technique. If the saturation operations are
not supported, the complex saturation check routines need to
be implemented with the branch instructions using carry or
overflow flag, which significantly increases the execution
cycle count.

FLOVA has three floating-point units that consist of an
floating-points ALU, an floating-point multiplier, and
floating-point reciprocal unit.

The floating-point multiplier (FMUL) has a special logic
that computes the power operation for the lighting of the
vertex based on piecewise linear approximation and multipli-
cation. This special logic is called “Fastpow” which consists
of two 32-bit carry-save adders and is easily merged in the
floating-point multiplier to use internal 24x24 multiplier for
fixed-point multiplication. The detailed operation of the “Fas-
tpow” is described in [11][13]. It computes the floating-point
power operation with only 4 cycles while it takes over 150 cy-
cles or requires a large ROM table in other processors while
the difference of power value generated by the “Fastpow” and
SPARC is under 5%. The overall block diagram of the FMUL
with “Fastpow” logic is shown in Fig. 6.

Fig. 6. The block diagram of FMUL.

The floating-point reciprocal unit can compute the recipro-

cal operation of the floating-point number with 8-bit precision.
The 8-bit precision is sufficient for 3D graphics application. If
the programmer wants more precision, the Newton-Raphson
iteration method can be used to increase the accuracy.

The geometry code composed of FLOVA instructions is
highly parallelized into four execution slots. To improve the
parallelism of the lighting stage, we have used “paired lights”
which compute the lighting of the vertex for two light sources

concurrently.

IV. PERFORMANCE
TG and TNG is the geometry processing time and other time

except geometry processing of the normal graphics system. TC
is the communication overhead by the interaction between
host and FGA and TFG is the geometry processing time con-
sumed in the geometry processor. The theoretical performance
improvement of FGA is as follows.

G NG
NG FG

NG C

G NG
NG FG

FG C

T T T T
T T

PI
T T T T
T T

+ ≥ += + <
 +

The experiments show that TFG is usually smaller than TNG

and TC is 0.1 TG. - 0.3 TG. Fig. 7 shows the experimental
results of the performance of FGA for several benchmarks.
The average of performance improvement against the normal
graphics system without FGA is 2.5.

Fig. 8 shows the performance improvement as the light of
the scene is increased. The lighting stage stands for 70% of
the geometry processing time and we have optimized the
lighting stage using the parallel execution of the FLOVA. The
performance of FGA is better when more lights are used.

Fig. 7. The performance improvement of FGA.

Fig. 9 shows the layout of FLOVA. The estimated chip size
of FLOVA processor consisting of about 650,000 gates, is
10mm × 10mm under 0.35µ.m TLM CBIC process, and
performance is 2100 MOPS (Million Operations Per Second)
/ 500 MFLOPS (Million Floating-point Operations Per Se-
cond) at 100 MHz clock frequency.

FGA system board is shown in Fig. 10. It consists of
SRAM, Board controller, and FLOVA. We have developed
FGA system board as a PC add-on card and have used PCI
interface for the communication between FGA and Host.

Fig. 8. The performance improvement of FGA as the num-
ber of lights is increased.

Fig. 9. The layout of FLOVA.

Fig. 10. The FGA system board that consists of SRAM,
Board controller, and FLOVA.

V. CONCLUSIONS
We have designed the FGA that is the geometry accelerated

graphics system using VLIW geometry processor called
FLOVA and FGA-GL, which is the 3D graphics library for
FGA. The deferred primitive rendering of FGA-GL enables
the concurrent processing of the host job and the geometry
processing and thus it almost removes the time required for
the geometry processing in 3D graphics pipeline. The FLOVA
can execute the geometry stage very efficiently with the fast
lighting unit and two operation modes for the transformation
in the geometry stage. FGA improves the average
performance of 3D graphics system by 2.5-3.0.

REFERENCES

[1] Yulun Wang, Amante Mangaser, and Partha Srinivasan,
“A Processor Architecture for 3D Graphics,” IEEE Com-
puter Graphics and Applications, Vol. 11, No .5, pp. 96-
105, Sep. 1992.

[2] John G. Torborg, “A Parallel Processor Architecture for
Graphics Arithmetic Operation,” Proceedings of SIGGR-
APH, pp. 197-204, 1987.

[3] J. H. Clark, “The Geometry Engine: A VLSI Geometry
System for Graphics,” Computer Graphics, Vol. 16, No.
3, pp.127-133, July 1982.

[4] John S. Montrym, Daniel R.Baum, David L. Dignam, and
Christopher J. Migdal, “InfiniteReality : A Real-Time Gr-
aphics System,” Proceedings of SIGGRAPH, pp. 293-
301, 1997.

[5] J. Sebot Julien, A. Vartanian, J-L Bechennec and N. Dra-
ch-Temam, “A Parallel Algorithm for 3D Geometry Tra-
nsformations in OpenGL,” Europar, pp. 669-652, 1999.

[6] ``3DNow! Technology, Delivering Leading-Edge 3D
Graphics and Multimedia Performance for the New Era
of Realistic Computing,'', Advanced Micro Devices, INC.,
May 1998.

[7] Shreekant Thakkar and Tom Huff, “The Internet Stream-
ing SIMD Extensions,” Intel Technology Journal Q2,
1999.

[8] Homan Igehy, Gordon Stoll, and Pat Hanrahan, “The
Design of Parallel Graphics Interface,” Proceedings of
SIG- GRAPH, pp. 141-150, 1998.

[9] Mark Segal and Kurt Akeley, “The OpenGL Graphics
System : A Specification, “ Mar. 23, 1998.

[10] Mesa library. http://www.mesa3d.org.
[11] S.J.Nam, Y.S.Kwon, B.W.Kim, Y.H.Im, K.G.Kang, and

C.M.Kyung, “FLOVA: A Four-issue VLIW Processor
with 3D Graphics Acceleration Units,” 10th International
Conference on Signal Processing Applications and Tech-
nology, Nov. 1999.

[12] S.J.Nam, B.W.Kim, Y.H.Im, Y.S.Kwon, K.G.Kang,
J.H.Lee and C.M.Kyung, “VLIW Geometry Processor for
3D Graphics Acceleration,” COOLChips II, pp.107-120,
Apr. 1999.

[13] Young-Su Kwon, In-Cheol Park, and Chong-Min Kyung
"A Hardware Accelerator for the Specular Intensity of
Phong Illumination Model in 3-Dimensional Graphics",
to be presented in ASP-DAC 2000.

http://www.mesa3d.org/

