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Abstract. Changes in Arctic sea ice affect atmospheric cir-
culation, ocean current, and polar ecosystems. There have
been unprecedented decreases in the amount of Arctic sea
ice due to global warming. In this study, a novel 1-month
sea ice concentration (SIC) prediction model is proposed,
with eight predictors using a deep-learning approach, convo-
lutional neural networks (CNNs). This monthly SIC predic-
tion model based on CNNs is shown to perform better pre-
dictions (mean absolute error – MAE – of 2.28 %, anomaly
correlation coefficient – ACC – of 0.98, root-mean-square er-
ror – RMSE – of 5.76 %, normalized RMSE – nRMSE – of
16.15 %, and NSE – Nash–Sutcliffe efficiency – of 0.97) than
a random-forest-based (RF-based) model (MAE of 2.45 %,
ACC of 0.98, RMSE of 6.61 %, nRMSE of 18.64 %, and
NSE of 0.96) and the persistence model based on the monthly
trend (MAE of 4.31 %, ACC of 0.95, RMSE of 10.54 %,
nRMSE of 29.17 %, and NSE of 0.89) through hindcast vali-
dations. The spatio-temporal analysis also confirmed the su-
periority of the CNN model. The CNN model showed good
SIC prediction results in extreme cases that recorded unfore-
seen sea ice plummets in 2007 and 2012 with RMSEs of
less than 5.0 %. This study also examined the importance of
the input variables through a sensitivity analysis. In both the
CNN and RF models, the variables of past SICs were identi-
fied as the most sensitive factor in predicting SICs. For both
models, the SIC-related variables generally contributed more
to predict SICs over ice-covered areas, while other meteoro-
logical and oceanographic variables were more sensitive to
the prediction of SICs in marginal ice zones. The proposed
1-month SIC prediction model provides valuable informa-
tion which can be used in various applications, such as Arctic

shipping-route planning, management of the fishing industry,
and long-term sea ice forecasting and dynamics.

1 Introduction

Sea ice refers to the frozen seawater that covers approxi-
mately 15 % of the oceans in the world (National Snow and
Ice Data Center, 2018). Sea ice reflects more solar radiation
than the water’s surface, which makes the polar regions rel-
atively cool. Sea ice shrinks in summer due to the warmer
climate and expands in the winter season. Many studies on
Arctic sea ice monitoring and dynamics have been conducted
because it plays a significant role in the energy and water
balance of global climate systems (Ledley, 1988; Guemas
et al., 2016). In particular, the change in sea ice is an im-
portant indicator that shows the degree of ongoing climate
change (Johannessen et al., 2004). Global warming causes
a decrease in sea ice that worsens the arctic amplification,
which in turn accelerates global warming itself (Cohen et al.,
2014; Francis and Vavrus, 2015). In addition, sea ice affects
various oceanic characteristics and societal issues, such as
ocean current circulation, by changing salinity and tempera-
ture gradation (Timmermann et al., 2009); polar ecosystems,
by affecting key parts of the Arctic food web like sea ice al-
gae (Doney et al., 2012); and economic industries, e.g., Arc-
tic shipping routes (Melia et al., 2016).

Arctic sea ice has been rapidly declining, which impacts
not only the Arctic climate but also possibly the mid-latitudes
(L. Yu et al., 2017). Numerous studies have shown signif-
icant interactions between the ocean and climate character-
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istics, such as sea surface temperature, solar radiation, sur-
face temperature, and the changes in sea ice (Guemas et al.,
2016). Therefore, the prediction of long- and short-term sea
ice change is an important issue in projecting climate change
(Yuan et al., 2016). Various approaches, including numeri-
cal modeling and statistical analysis, have been proposed to
develop models for predicting sea ice characteristics (Gue-
mas et al., 2016; Chi and Kim, 2017). Many of the stud-
ies have adopted statistical models using in situ observations
or reanalysis data based on the relationship between sea ice
and ocean or climate parameters (Comeau et al., 2019). The
long-range forecasting models of the sea ice severity index
and concentration (monthly to seasonal) using multiple lin-
ear regression were developed by Drobot (2003) and Drobot
et al. (2006), respectively. Lindsay et al. (2008) examined
the short- and long-term sea ice extent (SIE) prediction using
a multiple linear regression model with historical informa-
tion regarding the ocean and ice data. Wang et al. (2016b)
developed a vector autoregressive (VAR) model to predict
the intraseasonal variability in sea ice concentration (SIC) in
the summer season (May–September). The suggested VAR
model considering only the historical sea ice data without
any atmospheric and oceanic information showed a root-
mean-square error (RMSE) of ∼ 17 % for a 30 d prediction.
However, the literature has reported that sea ice prediction is
a very challenging task under the changing Arctic climate
system (Holland and Stroeve, 2011; Stroeve et al., 2014).
A short-term forecast of SIC has been also examined us-
ing statistical approaches. Wang et al. (2019) evaluated the
sub-seasonal predictability of Arctic SIC using multiple vari-
ables of sea ice, the atmosphere, and the ocean based on
statistical approaches – the VAR and vector Markov mod-
els. The VAR model showed quite good predictability in
the short term, with an RMSE of 10 %, but still resulted in
high RMSEs (∼ 20 %) for longer than 4 weeks over the pan-
Arctic region during the summer season (from June to Au-
gust). Meanwhile, the data-adaptive harmonic (DAH) tech-
nique, which examines a data-driven feature using cross cor-
relations, was demonstrated to predict the Arctic SIE (Kon-
drashov et al., 2018). The DAH model showed a promising
predictability of the SIE in September, resulting in the ab-
solute error of about 0.3×106 km2 in 2014–2016. Chi and
Kim (2017) suggested a deep-learning-based model using
long- and short-term memory (LSTM) in comparison with
a traditional statistical model. Their model showed good per-
formance in the 1-month prediction of sea ice concentra-
tion (SIC), with less than 9 % average monthly prediction
errors. However, it had low predictability during the melt-
ing season (RMSE of 11.09 % from July to September). Kim
et al. (2019) proposed a near-future SIC prediction model
(10–20 years) using deep neural networks together with the
Bayesian model averaging ensemble, resulting in an RMSE
of 19.4 % in the annual average. This study suggests that
deep-learning techniques are good for connecting variables
under non-linear relationships, such as SIC and climate vari-

ables. However, this study also showed low prediction accu-
racy during the melting season (normalized RMSE – nRMSE
– of 102.25 % from June to September). Wang et al. (2017)
used convolutional neural networks (CNNs) to estimate SIC
in the Gulf of Saint Lawrence from synthetic-aperture-radar
(SAR) imagery. Their study compared their CNN model to
a multilayer perceptron (MLP) model, showing the superior-
ity of the CNN model in SIC estimation with an RMSE of
about 22 %.

However, different from the classic statistical models, the
previous studies using deep-learning techniques have fo-
cused on the long-term prediction of SIC (i.e., more than
1 year of prediction). The short-term forecasting of sea
ice conditions is also important for maritime industries and
decision-making on field logistics (Schweiger and Zhang,
2015). In addition, there is room to further improve the ac-
curacy of short-term SIC prediction models with more ad-
vanced techniques and data. SIC describes the fraction of a
specified area (typically a grid cell) covered by sea ice, and
it has been widely used as a simple and intuitive proxy to
identify the characteristics of sea ice. Thus, this study aimed
to predict the changes in Arctic sea ice characteristics us-
ing SIC.

This study proposes a novel deep-learning-based method
to predict SIC based on the predictors of spatial patterns,
considering the operational forecast of sea ice character-
istics. The objectives of this study were to (1) develop a
novel monthly SIC prediction model using a deep-learning
approach (CNN), (2) examine the prediction performance
of the proposed model through comparison with a random-
forest-based SIC prediction model, and (3) conduct a sensi-
tivity analysis of predictors that affect SIC predictions.

2 Data

Three types of datasets were used in this study, which rep-
resent sea ice concentrations, oceanographic, and meteoro-
logical characteristics in the Arctic. This study focuses on
the prediction accuracy of the proposed models as well as
the sensitivity of each predictor in monthly SIC prediction.
The spatial domain of this study is a region of the Arctic
Ocean (40–90◦ N, 180◦W–180◦ E), and the temporal cover-
age is the 30 years between 1988 and 2017.

The first dataset is the daily sea ice concentration ob-
servation dataset, obtained from the National Snow and
Ice Data Center (NSIDC), which is derived from the
Nimbus-7 Scanning Multichannel Microwave Radiometer
(SMMR) and the Defense Meteorological Satellite Program
(DMSP) Special Sensor Microwave Imager (SSM/I and SS-
MIS). The second dataset is the daily sea surface tem-
perature dataset, obtained from National Oceanic and At-
mospheric Administration (NOAA) Optimal Interpolation
Sea Surface Temperature (OISST) version 2, which is con-
structed from Advanced Very High Resolution Radiometer
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(AVHRR) observation data with 0.25◦ resolution from 1988
to 2017. The third dataset is the monthly European Centre
for Medium-Range Weather Forecasts (ECMWF) reanalysis
(ERA-Interim) dataset, which is used in order to construct
predictors for 1-month SIC prediction, including the surface
air temperature, albedo, and v-wind vector with 0.125◦ reso-
lution.

In this study, a total of eight predictors were selected and
used to predict SIC for the next month (Table 1) based on the
literature and a preliminary statistical analysis of potential
predictors through a feature selection process using random
forest (Strobl et al., 2007). We selected the eight predictors
by comparing the mean decrease accuracy (MDA) changes
based on 12 monthly prediction random-forest (RF) mod-
els from 1988 to 2017. The MDA has been widely used as
feature selection criteria by measuring the accuracy changes
by randomly permuting input variables (Archer and Kimes,
2008). It should be noted that fewer predictors than the se-
lected eight ones did not produce better results. The predic-
tors are as follows: SIC 1 year before (sic_1y), SIC 1 month
before (sic_1m), SIC anomaly 1 year before (ano_1y), SIC
anomaly 1 month before (ano_1m), sea surface temperature
(SST), 2 m air temperature (T2m), forecast albedo (FAL),
and the amount of v wind (v wind).

In order to have the same spatial and temporal scales, the
daily data, including SIC and SST, were transformed into
monthly means and onto a polar stereographic projection
with 25 km grids. The predictors were normalized to 0 to 1 or
−1 to 1 (for ano_1y and ano_1m). Since sea ice decline has
accelerated in recent years, especially in the summer season
(Stroeve et al., 2008; Schweiger et al., 2008; Chi and Kim,
2017), we computed the SIC anomaly variables only for a
more recent time period (2001–2017) rather than for the en-
tire study period (1988–2017). This was done in order to fo-
cus on the trends in recent sea ice changes. Since the anoma-
lies were calculated from the recent years (2001–2017), there
is no significant multicollinearity issue that could cause over-
fitting (Pearson’s correlation coefficient between mean SICs
and anomalies (ρ)=−0.39, p < 0.01). The v wind indi-
cates the relative amount of wind towards the North Pole: the
larger the v wind, the more it blows from south to north. The
v-wind data were derived using an 11×11 moving window
based on a mean function from the raw 10 m height v-wind
vector data. Regarding the moving window, this study set the
analysis unit as an 11×11 window (neighboring five pixels;
about 125 km) in order to consider the synoptic-scale cli-
mate and ocean circulation in the polar region (Crane, 1978;
Emery et al., 1997).

The eight predictors selected in this study through random-
forest-based feature selection have theoretical backgrounds
that are related to the characteristics of SIC. First, SIC it-
self can affect the SIC in the future because it has a clear
interannual trend through the melting and freezing seasons
(Deser and Teng, 2008; Chi and Kim, 2017). This is a useful
characteristic when conducting a time-series analysis, and,

thus, two SIC time-series climatology predictors (SIC 1 year
before and SIC 1 month before) were used in this study. Al-
though there is no clear physical explanation of why the in-
terannual variations would contribute to the forecasting skill,
it clearly worked well in long-term SIC forecasting in pre-
vious studies (Wang et al., 2016a; Chi and Kim, 2017). Fur-
thermore, we used two supplementary predictors that indi-
cate the anomalies of SIC 1 year before and SIC 1 month be-
fore in order to consider anomalous sea ice conditions in the
models. The anomaly data could give information about SST
anomaly along the sea ice edge in terms of the re-emergence
mechanism from the melting to the freezing seasons (Gue-
mas et al., 2016). Second, changes in SST and SIC have a
significant relationship to each other with regards to the heat
budget (Rayner et al., 2003; Screen et al., 2013; Prasad et
al., 2018). The re-emergence of sea ice anomalies is also par-
tially explained by the persistence of SST anomalies (Gue-
mas et al., 2016). Air temperature and albedo are related to
the amount of solar radiation enabling the prediction of SIC
changes. The solar radiation heats the surface of the ocean as
well as the sea ice. This causes a rise in the SST while also
reducing albedo on the sea ice by melting the surface snow
or thinning the sea ice (Screen and Simmonds, 2010; Maha-
jan et al., 2011). Moreover, the surface snowmelt produces
melt ponds, wet sea ice surfaces, and wet snow cover, which
accelerate sea ice melting (Kern et al., 2016). Warm winds
from lower latitudes toward the Arctic can also reduce sea
ice (Kang et al., 2014), and local wind forces affect sea ice
motion and formation (Shimada et al., 2006). The wind vec-
tor also can cause short- or long-range sea ice drifts (Guemas
et al., 2016), which may influence SIC variation.

3 Methods

3.1 Prediction models: convolutional neural networks
(CNNs), random forest (RF), and anomaly
persistence model

This study proposes a SIC prediction model using a CNN
deep-learning approach. A CNN is a kind of artificial neural
network (ANN) model first suggested by LeCun et al. (1998)
and has since been further developed with various structures
and algorithms. Many studies have adopted CNN approaches
to complete image recognition or classification tasks (Kim
et al., 2018a; Ren et al., 2015; Yoo et al., 2019; E. Zhang
et al., 2019). CNN learns the features of images and takes
them into account as key information in order to extract out-
puts (Kim et al., 2018b; Wylie et al., 2019). Convolutional
networks share their weights and connect neighboring layers
using convolution layers like neurons (X. Yu et al., 2017).
The convolutional structure is a unique feature of CNN mod-
els that often shows higher performance than other types of
ANN in image recognition studies (Krizhevsky et al., 2012;
Lee et al., 2009; Zhao et al., 2020). The basic CNN struc-
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Table 1. The specifications of the eight predictors used to predict short-term SIC in the study.

Temporal Spatial Normali-
Variable Source Unit resolution resolution zation

SIC 1 year before (sic_1y) NSIDC % Daily 25 km 0–1
SIC 1 month before (sic_1m) NSIDC % Daily 25 km 0–1
SIC anomaly 1 year before (ano_1y) NSIDC % Daily 25 km −1–1
SIC anomaly 1 month before (ano_1m) NSIDC % Daily 25 km −1–1
Sea surface temperature 1 month before (SST) NOAA OISST ver. 2 K Daily 0.25◦ 0–1
2 m air temperature 1 month before (T2m) ECMWF ERA-Interim K Monthly 0.125◦ 0–1
Forecast albedo 1 month before (FAL) ECMWF ERA-Interim % Monthly 0.125◦ 0–1
The amount of v wind 1 month before (v wind) ECMWF ERA-Interim m s−1 Monthly 0.125◦ 0–1

ture consists of a bundle of convolutional layers, a number
of pooling layers, and a fully connected layer. The convolu-
tional process is to generate feature maps from gridded input
data with kernel and activation functions. A CNN model ex-
tracts the best feature map from an input image through an
iterative training process including backpropagation learning
and optimization algorithm.

In CNN approaches, when 3-D data (i.e., width, height,
and depth – or channel) are entered, several moving kernels
pass through the data for each channel and transform them
into feature maps using dot-product calculation. Through a
number of convolutional processes, the model uses the fully
connected layer to generate the final answer. The series of
convolutional processes involved in this process requires sig-
nificant computation loads. To prevent heavy computation,
both the stride (i.e., how to shift a moving kernel) and the
pooling (i.e., how to conduct downsampling) techniques are
widely used, which make the size of the input data in the
following convolutional process reduced. To avoid too much
data reduction, many studies have adopted a padding tech-
nique, which covers input data with extra dummy values
(Wang et al., 2016a). The feature map achieved through the
convolutional process is a convolved map that contains a
higher level of features of an image (Chen et al., 2015). In
general, a CNN model contains a larger learning capacity and
provides more robustness against noise than normal MLP
models because of the more trainable parameters as well as
the structure of deeper networks (Wang et al., 2017).

In order to conduct a quantitative comparison of the pre-
diction performance of the proposed CNN model, this study
used RF, which is an ensemble-based machine-learning tech-
nique (Jang et al., 2017; Latifi et al., 2018; Lee et al., 2018;
Yoo et al., 2018). The RF model was used to solve image-
based classification problems such as building extraction,
land-cover classification, freeboard detection, and crop clas-
sification (Liu et al., 2018; Guo and Du, 2017; Forkuor et
al., 2018; Lee et al., 2016; Park et al., 2018; Sonobe et al.,
2017). RF extracts features using classifiers of each variable
(D. Zhang et al., 2019). The user can deal with two main
parameters: the number of decision trees and the number of

split variables at the nodes (Fagua and Ramsey, 2019). In this
study, we used 50 trees and 11 random variables to be used in
the decision split because random selection using one-third
of variables in each split has been used widely in solving
regression problems (Lee et al., 2017; Liu et al., 2015; Mu-
towo et al., 2019). Compared to the CNN approach, RF has
a relatively low learning capacity from the perspective of the
parametric size.

Finally, an anomaly persistence forecast model was also
examined for predicting the monthly Arctic SIC. The
anomaly persistence model is a useful reference for forecast
skill for time-series data (Wang et al., 2016). Since sea ice
shows a clear climatological pattern (Parkinson and Cava-
lieri, 2002; Deser and Teng, 2008; Chi and Kim, 2017), this
study used the persistence forecast model along with the RF
regression model as baseline models to figure out the perfor-
mance of the CNN model for SIC prediction.

3.2 Research flow

This study examined three models in order to predict SIC us-
ing the persistence and RF-based (baselines) and CNN-based
approaches (Fig. 1). We designed 12 individual models (i.e.,
monthly models) to predict SIC for each month. A hindcast
validation approach was used to evaluate each model’s per-
formance. Each monthly model was trained using the past
data starting from 1988. For instance, 12 years of data (1988–
1999) and 29 years of data (1988–2016) were trained to pre-
dict SICs in 2000 and 2017, and 2000 and 2017 SIC data
were used as validation data. Eight input data during the past
30 years that consist of 304×448 sized grids were used as
training data in the RF and CNN models. In the case of the
RF model, an additional 24 input parameters, along with the
eight predictors, were considered. They are the mean, mini-
mum, and maximum values of each predictor calculated us-
ing the 11×11 window. These additional variables for RF are
to fill the conceptual gaps between the two approaches by
considering the spatial patterns of predictors such as features
in the CNN model. Since most SIC samples were biased to
zero values because of the numerous pixels in the open sea,
the training samples were balanced out considering the SIC

The Cryosphere, 14, 1083–1104, 2020 www.the-cryosphere.net/14/1083/2020/



Y. J. Kim et al.: Prediction of Arctic sea ice concentrations 1087

values (0 %–100 %) using a monthly maximum SIE mask,
which shows the widest SIE during the entire study period
(1988–2017) for each month. As a result, in the case of 2017,
about 600 000 samples on average (i.e., from about 400 000
samples in September to about 850 000 samples in March)
were trained for both monthly models (i.e., RF and CNN).
However, the unbalanced sampling problem still remained
because the lower SIC (less than 40 %) samples were rela-
tively small (about 20 % of the entire training samples). In the
case of the anomaly persistence forecast model, the monthly
SIC anomaly of each pixel persisted and the observed trend
was calculated for the month ahead. For example, SICs in
January 2000 were predicted by summing the 1-month per-
sistence anomaly and 1-month-ahead SIC from a linear trend
of SICs from January 1988 to December 1999 by each grid.

As described in Fig. 1, the CNN model consists of three
convolutional layers and one fully connected layer. Wang
et al. (2017) used CNNs to estimate SIC from SAR data
and showed that the use of three convolutional layers per-
formed better than one or two layers. In this study, the root-
mean-square propagation (RMSProp) optimizer with a learn-
ing rate of 0.001 and the ReLU activation function were used
in the model. The RMSProp optimizer has a similar process
to a gradient descent algorithm, which divides the gradients
by a learning rate (Tieleman and Hinton, 2012). Fifty (50)
epochs with a batch size of 1024 were used in the proposed
CNN model. The best model showing the highest valida-
tion accuracy during the training process was selected and
used for further analysis. The CNN model was implemented
using the TensorFlow Keras open-source library, while the
persistence and RF models were implemented using the in-
terp1 and TreeBagger functions in MATLAB R2018a, re-
spectively.

This study firstly evaluated the model performance by
quantitatively comparing the prediction results of the three
models based on five accuracy metrics: the mean absolute
error (MAE; Eq. 1), anomaly correlation coefficient (ACC;
Eq. 2), root-mean-square error (RMSE; Eq. 3), nRMSE
(Eq. 4), and Nash–Sutcliffe efficiency (NSE; Eq. 5). In the
melting season, many pixels contain relatively low SIC val-
ues compared to the freezing season. By dividing the RMSE
by the standard deviation of actual SICs, the nRMSE can rep-
resent the prediction accuracy considering the range of SIC
values (Kim et al., 2019). The ACC is a measure of skill score
to evaluate the quality of the forecast model (Wang et al.,
2016) and has a value between −1 (inversely correlated) and
1 (positively correlated). The NSE is a widely used measure
of prediction accuracy (Moriasi et al., 2007). This can pro-
vide comprehensive information regarding data by compar-
ing the relative variance of prediction errors with the variance
of the observation data (Nash and Sutcliffe, 1970; Moriasi et
al., 2007). The NSE has a range from −∞ to 1.0. A model
is more accurate when the NSE value closer is to 1 but un-
acceptable when the value is negative (Moriasi et al., 2007).
Every error matrix was computed with respect to space and

time. The errors were spatially averaged after masking and
then temporally averaged:

MAE=mean(|predicted SIC− actual SIC|) , (1)

ACC=
mean

(∑(
predicted SIC− predictedSIC

)√
mean(

∑(
predicted SIC− predictedSIC

)2
)(

actual SIC− actualSIC
))√

mean(
∑(

actual SIC− actualSIC
)2
)

x :mean, (2)

RMSE=
√

mean[(predicted SIC− actual SIC)2], (3)

nRMSE=

√
mean

[
(predicted SIC− actual SIC)2

]
std(actual SIC)

, (4)

NSE= 1−
∑
(actual SIC− predicted SIC)2∑

(actual SIC−mean(actualSIC))2
. (5)

With respect to prediction accuracy analysis, a specific mask
that covers only pixels that have shown sea ice more than
once in the past 10 years was used to prevent an inflation of
overall accuracy that may have happened due to the effect
of pixels on open seas in the melting season (Chi and Kim,
2017; Kim et al., 2019). For example, to calculate the pre-
diction accuracy of predicted SIC in January 2017, the mask
covered only pixels that have shown sea ice in the month of
January from 2007 to 2016. To examine prediction perfor-
mance in the marginal sea ice zone, the models were com-
pared in two cases: the whole range of SICs (0 %–100 %)
and low SICs (0 %–40 %).

In addition, the study examined the spatial distribution
maps showing the annual MAE and ACC of three models
from 2000 to 2017. The spatial relationship between SIC
anomalies and prediction errors was also explored. Since the
actual anomalies, as well as actual prediction errors (pre-
dicted SICs–actual SICs), tended to cancel each other out
by averaging negative and positive values, we used abso-
lute anomaly and error values. Since the actual anomalies,
as well as actual prediction errors (predicted SICs–actual
SICs), tended to cancel each other out by averaging nega-
tive and positive values, we used absolute anomaly and er-
ror values. In order to examine temporal forecast skill, this
study compared the ACC between the monthly time series
of reference and predicted SICs at each grid (Wang et al.,
2016). The distribution of predicted SICs by both models was
also compared for the melting season (June–September). The
Sea Ice Outlook (SIO) open community has investigated the
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Figure 1. Study area and research flow.

pan-Arctic sea ice, especially in the September SIE, since
2008 (Stroeve et al., 2014; Chi and Kim, 2017). They have
shared the predicted September SIE from June, July, and Au-
gust based on heuristic, statistical, dynamical, and mixed ap-
proaches. Chi and Kim (2017) have pointed out the difficul-
ties of sea ice prediction because the prediction errors have
increased since 2012. To figure out September minimum SIE,
which is the main focus of the SIO community (Stroeve et al.,
2014), we compared the predicted SIEs based on the three
models evaluated in this study with the other 37 SIO con-
tributions for the September SIE predictions reported in Au-

gust 2017. In the present study, the SIE was identified as an
area of SIC> 15 % (Chi and Kim, 2017). Furthermore, the
averaged monthly trends of prediction accuracy using RMSE
and nRMSE together were examined with the trends of an-
nual mean nRMSE by dividing the data into melting (June–
September) and freezing (December–March) seasons.

In this research, we compared and examined prediction
results focusing on two extreme cases of SIC: Septem-
ber 2007 and 2012. There was unexpectedly large Arctic
sea ice shrinkage in the summer 2007 and 2012 because of
the large-scale changes in climate conditions and August cy-
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clones, respectively (Devasthale et al., 2013). Therefore, for
detailed analysis, visual interpretation comparing the spatial
patterns of prediction errors and input variables was con-
ducted by focusing on the regions showing high prediction
errors in September 2007 and September 2012.

Finally, we examined the variable sensitivity for each
model. Rodner et al. (2016) evaluated the variable sensitivity
of built-in CNN architectures in three ways: adding random
Gaussian noises, taking geometric perturbations, and setting
random impulse noises (i.e., set the pixel values to zero) to
input images. In this research, the analysis of variable sensi-
tivity was conducted using their first and third methods. To
examine the influence of variables on prediction accuracy,
we added random Gaussian noises with the zero mean and
0.1 standard deviations and then compared any changes of
RMSE for each variable (Eq. 6). In addition, to examine the
spatial effects on the predictions, the prediction results were
compared by setting zero values for two groups of variables,
namely variables related to sea ice (sic_1y, ano_1y, sic_1m,
and ano_1m) and other environmental variables (SST, T2m,
FAL, and v wind):

Sensitivity(Varx)=

Changed RMSE with variable x containing noises
Original RMSE

. (6)

4 Results and discussion

4.1 Monthly prediction of SIC

Table 2 shows the average prediction accuracies of the mod-
els from 2000 to 2017. The CNN model showed higher per-
formance than the persistence model as well as RF models
in all accuracy metrics. When it comes to considering the
whole range of SICs (0 %–100 %), the persistence model re-
sulted in the lowest prediction performance (MAE of 4.31 %,
ACC of 0.95, RMSE of 10.54 %, nRMSE of 29.17 %, and
NSE of 0.89). While the RF and CNN models resulted in
good prediction accuracy with a small difference in MAE,
ACC, and RMSE (CNN: MAE of 2.28 %, ACC of 0.98,
RMSE of 5.76 %, and NSE of 0.97; RF: MAE of 2.45 %,
ACC of 0.98, RMSE of 6.61 %, and NSE of 0.96), the CNN
model showed better results than the RF model for nRMSE
(16.15 % and 18.64 %, respectively). These results imply that
the error distribution of the CNN model was more stable than
the persistence model as well as RF. For the low SICs (0 %–
40 %), the MAE increased, but this was due to the lower SIC
values. The RMSE and nRMSE of the persistence model
decreased, but the others increased (persistence: 8.94 % of
RMSE and nRMSE of 24.62 %; RF: RMSE of 7.23 % and
nRMSE of 19.87 %; and CNN: RMSE of 6.18 % and nRMSE
of 16.87 %). This implies that the RF and CNN models might
be relatively weak in predicting SICs in the marginal sea ice
zone when compared to the central zone. The ACC and NSE
values decreased for all models for low SICs (persistence:

ACC of from 0.95 to 0.54 and NSE of from 0.89 to 0.81; RF:
ACC of from 0.98 to 0.96 and NSE of from 0.96 to 0.90; and
CNN: ACC of from 0.98 to 0.96 and NSE from 0.97 to 0.93).
In particular, the persistence model shows a larger decrease
than the other models. Nonetheless, the CNN model pro-
duced consistently higher performance than the other models
for both cases.

The spatial distribution of the annual MAE of three mod-
els from 2000 to 2017 is shown in Fig. 2. From visual inspec-
tion, it appeared that the prediction errors were dominant in
the marginal areas (i.e., the boundaries between the sea ice
and open seas). Since the marginal sea ice, particularly thin
ice, is susceptible to change (Stroeve et al., 2008; Chevallier
et al., 2013; Zhang et al., 2013), the prediction accuracy may
have decreased. Weak predictability in the marginal sea ice
zone might be due to a relatively small training sample size
over the area. In the melting season, relatively higher predic-
tion errors appeared not only in the marginal area but also
in ice-covered areas near the Arctic center (Fig. 2f–h). On
the other hand, in the freezing season, the prediction errors
were shown mainly in the marginal area (Fig. 2j–l). Further-
more, relatively higher prediction errors appeared around the
Kara Sea and the Barents Sea (Fig. 2a, e, and i). The region
from the Kara Sea to the Barents Sea shows consistent sea
ice retreats because of inflows of warm and salty ocean water
from the Atlantic Ocean into the Barents–Kara Sea (Schauer
et al., 2002; Årthun et al., 2012; Kim et al., 2019) and cumu-
lative positive solar radiation in the summer season (Stroeve
et al., 2012). Using a visual comparison, it can be seen that
the degree of error is higher in the RF model than in the CNN
model (Fig. 2).

The spatial distribution of the temporal ACCs of three
models from 2000 to 2017 is shown in Fig. 3. First of all,
every prediction model showed quite good skill scores with
high positive correlation (near 1.0; Fig. 3a–c). Interestingly,
the ACCs were higher in the marginal area, which showed
relatively high prediction errors. Even though the models
were weak in predicting SIC changes in the marginal sea ice
zone, they caught decreasing trends of SICs relatively well.
On the other hand, the region near the Arctic center showed
relatively low ACCs. In contrast to the marginal sea ice zone,
the Arctic center region is relatively stable to the changes
(Stroeve et al., 2008; Chevallier et al., 2013). Since SICs in
the center are almost saturated (100 % of SIC) and very sta-
ble, it might cause lower ACC values even there were rela-
tively small prediction errors. In case of the melting season
(June–September; Fig. 3d–f), the degree of ACCs decreased
when compared to the annual mean (Fig. 3a–c), but they
also showed the decreasing trends well in accordance with
global warming. Unlike the melting season, the freezing sea-
son (December–March) showed relatively lower ACCs in the
marginal and Arctic center regions (Fig. 3g–i). The persis-
tence model did not catch the decreasing trend and showed
a negative correlation in the Laptev Sea (Fig. 3g). Further-
more, the ACCs were quite low in the Arctic center region.
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Table 2. Average prediction accuracies among three models on every SIC (0 %–100 %) and low SICs (0 %–40 %) during 2000–2017 (mean
absolute error, anomaly correlation coefficient, root-mean-square errors, normalized root-mean-square errors, and Nash–Sutcliffe efficiency).

MAE ACC RMSE nRMSE NSE

All range of SICs Persistence 4.31 % 0.95 10.54 % 29.17 % 0.89
(0 %–100 %) RF 2.45 % 0.98 6.61 % 18.64 % 0.96

CNN 2.28 % 0.98 5.76 % 16.15 % 0.97

Low SICs Persistence 2.94 % 0.54 8.94 % 24.62 % 0.81
(0 %–40 %) RF 2.38 % 0.96 7.23 % 19.87 % 0.90

CNN 2.13 % 0.96 6.18 % 16.87 % 0.93

As mentioned above, the stable and saturated sea ice resulted
in lower skill scores in terms of ACC. From visual inspec-
tion, the CNN model showed better prediction with a stable
skill score than the other models.

Figure 4 shows the histograms of NSIDC SICs and the
predicted SICs by three models in the melting season (June–
September) during 2000–2017. The persistence forecast-
ing model shows poor predictability for all ranges of SICs
(Fig. 4a). In addition, the model tended to overestimate for
higher SICs in the melting season. The model did not catch
the decreasing trends of sea ice well due to global warming.
On the other hand, the RF and CNN models showed rela-
tively weak predictability for boundary SIC values (i.e., less
than 10 % and over 90 % SICs). In particular, the RF model
showed weakness in predicting SICs near zero (0 %) and
100 %. By focusing on the RF and CNN models, the mean
and standard deviation values of prediction errors (predicted
SIC–NSIDC) were examined for lower as well as higher
SICs. In the case of lower SICs (less than 5 %), both models
showed overestimation. In detail, the CNN model showed a
better prediction result than RF (CNN: mean error of 4.84 %
and SD of 7.65 %; RF: mean error of 5.92 % and SD of
9.77 %). On the other hand, in the case of higher SICs (over
95 %), both models showed underestimation. The RF model
shows a −4.62 % error and 4.57 % standard deviation, but
the CNN model shows −4.17 % and 4.14 %, respectively.
With the same training samples, the CNN model resulted in
higher prediction accuracy in both lower and higher SICs.
This might be because of the larger learning capacity of the
CNN model than the RF model (Wang et al., 2017).

The spatial comparison of the predicted September SIEs in
2017 between the reference (NSIDC) and three approaches
used in this study is shown in Fig. 5. The observed SIE in
September 2017 was 4.80×106 km2, which was reported by
the Sea Ice Prediction Network (http://www.arcus.org/sipn,
last access: 22 March 2020). The SIE in 13 September 2017
was the eighth lowest in the satellite record since 1981
(NSIDC, 2017). The SIEs predicted by the anomaly persis-
tence, RF, and CNN models were 4.37×106, 4.95×106, and
4.88×106 km2, respectively. While the anomaly persistence
model underestimated the SIE, the other two models slightly
overestimated it. The anomaly persistence model considered

the decreasing trends of sea ice somewhat excessively. The
CNN-based model showed the lowest prediction error when
compared to the Sea Ice Prediction Network reference data
(9×104 km2). In terms of spatial distributions, the anomaly
persistence model showed the excessive retreat of sea ice in
the Beaufort and Laptev Sea (Fig. 5a). However, the RF and
CNN models showed a slightly wide SIE in the Chukchi and
Barents Sea (Fig. 5b and c). The overestimated SIE might
be because of the July storm across the central Arctic Ocean
through the Barents Sea (West and Blockley, 2017). The ac-
curacy of 1-month SIE prediction based on three approaches
was compared to the other 37 SIO contributions for Septem-
ber 2017 (Fig. 5d). Since the SIO reports contain only quanti-
tative SIE values, it was not possible to compare their spatial
distributions. With regard to the SIE values, the statistical ap-
proaches showed quite accurate prediction results based on
Arctic sea ice thickness distributions and ice velocity data
(UTokyo) and the non-parametric statistical model (Slater–
Barrett NSIDC). The CNN prediction result showed rela-
tively accurate prediction accuracy.

Since the persistence model did not work well when com-
pared to the RF and CNN models, the subsequent analyses
are focused on the RF and CNN models. Figure 6 shows
monthly prediction accuracies (i.e., RMSE and nRMSE) for
the RF and the CNN models. The RF model showed lower
prediction accuracy than the CNN model for all months.
With regards to the RMSE of the CNN model, the pre-
diction accuracy was higher in the melting season (June–
September; 5.41 %) than in the freezing season (December–
March; 6.13 %). However, as mentioned, the RMSE consid-
ers the range of sample values; for instance, more zero or
low SIC values were found in the melting season (Chi and
Kim, 2017). Thus, the nRMSE showed the opposite pat-
tern to the RMSE. The nRMSE using the standard devia-
tion can show the prediction accuracy considering the dif-
ferent ranges of SIC by month. In the nRMSE of the CNN
model, there is a different pattern between the melting season
(June–September; 19.09 %) and freezing season (December–
March; 14.08 %). According to the two-sample t test, the
nRMSE in the melting season is higher than in the freez-
ing season (p < 0.01; n= 18) throughout the entire period
(2000–2017). The difficulty of SIC prediction in the melting

The Cryosphere, 14, 1083–1104, 2020 www.the-cryosphere.net/14/1083/2020/

http://www.arcus.org/sipn


Y. J. Kim et al.: Prediction of Arctic sea ice concentrations 1091

Figure 2. The mean absolute SIC anomaly (a) and mean absolute errors between predicted SICs and the actual SICs by the persistence (b),
RF (c), and CNN (d) during 2000–2017. As in (a–d) but for the melting (June–September) and freezing (December–March) seasons, shown
in (e–f) and (i–l), respectively.

season is a well-known problem because of the unexpected
decline of Arctic sea ice in recent years (Stroeve et al., 2007;
Chi and Kim, 2017).

By focusing on the different patterns of prediction accu-
racy in the freezing (December–March; nRMSE of 14.08 %)
and melting season (June–September; nRMSE of 19.09 %),
the yearly trends in the prediction accuracy of the CNN
model were examined (Fig. 7). The nRMSE in the melt-
ing season showed an increasing trend in more recent years
(2000–2017). Since the dynamic changes in the Arctic en-

vironment, including warm air temperature (Hassol, 2004;
Zhang et al., 2008), thinning sea ice (Maslanik et al., 2007),
and higher ocean surface temperature (Steele et al., 2008),
have intensified in recent years, it makes the prediction of
SIC in the melting season much more challenging. For in-
stance, the Arctic sea ice extent experienced two major plum-
mets, one in summer 2007 and one in summer 2012, be-
cause of multiple causes, such as the unexpected warm at-
mospheric conditions, radiation anomalies, and summer cy-
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Figure 3. The temporal ACC of the persistence (a), RF (b), and CNN (c) during 2000–2017. As in (a–c) but for the melting (June–September)
and freezing (December–March) seasons, shown in (d–f) and (g–i), respectively.

clones (Kauker et al., 2009; Kay et al., 2008; Parkinson and
Comiso, 2013; Zhang et al., 2013).

4.2 Prediction results in extreme cases: September
2007 and 2012

SIC prediction results of the actual SIC and the SICs pre-
dicted by the RF and CNN models were found using two ex-
treme cases: September 2007 and 2012 (Figs. 8 and 9). Even
though there were unpredicted plummets in the extent of the
sea ice, the CNN model showed relatively good prediction

results in September 2007 and 2012 (RMSE of 5.00 % and
4.71 % and nRMSE of 21.93 % and 23.95 %, respectively).

In the case of September 2007, there were large sea ice
losses through the Beaufort Sea–Chukchi Sea–Laptev Sea
during summer (Fig. 8d). Both the RF and CNN models
showed an overestimation of SIC over the Chukchi Sea and
Laptev Sea. This implies that both models were not able to
effectively learn the speed of the drastic retreat of sea ice
in that region through training (Fig. 8e–f). Similarly, Fig. 9
shows the prediction results and errors based on the RF
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Figure 4. Histograms of SICs based on NSIDC (blue) and three models (brown) in the melting season (June–September) during 2000–2017.

Figure 5. The predicted SIEs using the anomaly persistence (a), RF (b), and CNN (c) for September 2017. Distribution of SIO values for
September 2017 SIEs reported in August 2017 (d).
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Figure 6. Monthly prediction accuracies with differences between
two models for the entire period (2000–2017; RMSEs and nRM-
SEs).

Figure 7. Changes of prediction accuracy (nRMSE) using
CNN model in freezing (December–March) and melting (June–
September) season (2000–2017; dotted lines show trend).

and the CNN models in September 2012. In summer 2012,
there was also a large loss of sea ice over the Beaufort Sea–
Laptev Sea–Kara Sea (Fig. 9d). Both the RF and CNN mod-
els yielded overestimations of SIC in the region between the
Barents Sea and the Kara Sea. This might have been caused
by the fast decline of sea ice in that region because of warm
seawater inflows from the Atlantic Ocean in the summer sea-
son (Schauer et al., 2002; Årthun et al., 2012; Kim et al.,
2019. The results of two extreme cases showed that the pre-
diction errors were mainly found in the regions that show
high SIC anomalies (i.e., marginal ice zone with small train-
ing sample size; Figs. 8d–f and 9d–f).

Together, Figs. 10 and 11 show a detailed analysis focus-
ing on the regions containing high numbers of prediction er-
rors in September 2007 and 2012. Interestingly in both cases,
overestimation was found in no ice zones directly neigh-
boring the marginal sea ice zone (dotted black circle area,
Figs. 10 and 11c–d). Both cases show high SST and T2m
anomalies together with a low FAL anomaly, caused by a
melted snow layer (Figs. 10 and 11i–k). Those anomalous
patterns of SST, T2m, and FAL were caused by anomalous
strong solar radiation for both cases (Kauker et al., 2009;

Kay et al., 2008; Parkinson and Comiso, 2013; Zhang et al.,
2013). In regards to v wind, the anomalous warm wind to-
ward the Arctic center, flowing in by strong southerly winds
driven from the Pacific water, resulted in melting in the Beau-
fort Sea in 2007 (Zhang et al., 2008; Fig. 10l). However, the
CNN model did not catch the past negative SIC anomalies
effectively. For instance, Fig. 10d and h depict overestima-
tion errors in the northern part of the region by showing
negative SIC anomalies. Similarly, Fig. 11d, g, and h doc-
ument overestimations in the northern part of the region that
shows negative SIC anomalies near the Barents Sea and the
Kara Sea. Such overestimation might be caused by the use of
a small moving window (i.e., 11×11). Since the anomalies
were found quite far from the marginal sea ice zone, the mod-
els were not able to predict changes in sea ice well. However,
a larger window size might impede the overall performance
of the model by forcing it to deal with too much learnable in-
formation in the CNN approach (Lai et al., 2015). A detailed
exploration of the optimum window size is needed in future
research.

4.3 Variable sensitivity

Table 3 shows the variable sensitivity results of both mod-
els from 2000 to 2017. The two models show SIC-related
variables as the most sensitive factor, i.e. sic_1m and sic_1y,
rather than other oceanic or climate variables. These results
are consistent for each model in the annual mean, freez-
ing season (December–March), and melting season (June–
September). As the SIC-related variables play a role in the
time-series climatology information of sea ice, SICs them-
selves can affect SIC prediction in the future (Deser and
Teng, 2008; Chi and Kim, 2017). Between long-term clima-
tologies (sic_1y and ano_1y) and short-term climatologies
(sic_1m and ano_1m), the former showed higher sensitivity
in both models (except sic_1y and sic_1m in the RF). The
previous studies have revealed the clear yearly sea ice trends
of each month by investigating monthly averaged sea ice ex-
tents of the nine Arctic regions and the total from 1979 (Cav-
alieri and Parkinson, 2012; Parkinson and Cavalieri, 2002).
Thus, the monthly models showed long-term climatologies
as factors that contribute more than the other variables (i.e.,
SICs from the previous January are important in the January
prediction model). Although long-term climatologies were
important in the monthly models, the RF model identified
sic_1m as the factor that contributes more than sic_1y. This
might be due to the limitation of the input variables of the
RF model used in this study, resulting in a lack of detailed
spatial information. The RF model considered spatial infor-
mation based on 24 additional proxies using an 11×11 win-
dow (i.e., mean, minimum, and maximum). However, it may
not be sufficient to examine the various spatial distributions
of input variables. As a result, the RF model might be highly
influenced by short-term information rather than long-term
variables.
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Figure 8. The actual SIC (a), predicted SICs (b–c), SIC anomaly (d), and errors between predicted and the actual SICs (e–f) in Septem-
ber 2007.

4.4 Variable sensitivity in extreme case: September
2007 and 2012

Table 4 shows the variable sensitivity, focusing on every
September in 2000–2017, 2007, and 2012. Unlike the results
in Table 3, T2m and FAL were identified as the most influ-
ential factors in the RF model. As reported in many studies,
solar radiation has a large effect on the changes in sea ice
(Kang et al., 2014; Guemas et al., 2016). In addition, the ice-
albedo feedback contributes to the recovery of sea ice from
the losses in summer (Comiso, 2006; Tietsche et al., 2011).
In the case of September 2007, the warm surface air tem-
perature was the main cause of the drastic decrease in sea
ice (Kauker et al., 2009). However, in the case of v wind, a
Gaussian noise made an improvement to the prediction ac-
curacy in two extreme cases for the RF model. While there
are no studies revealing the effects of v wind in Septem-
ber 2012, there is an indirect effect from the southerly warm
wind toward the Arctic center in September 2007 (Zhang et
al., 2008). Moreover, in the RF model, the degree of sensi-
tivity of FAL is bigger in the two extreme cases than for the

entire period. These pieces of evidence may point out that
the RF model is less robust than the CNN model to highly
anomalous SIC cases. In contrast to the RF model, the CNN
model consistently identified the sic_1y as the variable that
contributes the most. Although there is no clear causality be-
tween the SICs 1 year before and the anomalous decline of
sea ice in September 2007 and 2012, past SICs provide in-
formation on SICs in the future as time-series data (Chi and
Kim, 2017).

Figure 12 shows the spatial influence of two sets of vari-
ables with impulse noise (zero values). As shown in Fig. 12b
and e, the CNN model was not able to predict SICs in the ex-
isting sea ice area when using zero values for the SIC-related
variables (sic_1y, sic_1m, ano_1y, and ano_1m). When the
CNN model set zero values for the other environmental vari-
ables (SST, T2m, FAL, and v wind), the model was not able
to predict a decrease in SICs around the marginal areas be-
tween the sea ice and open sea (Fig. 12c and f). This is pos-
sibly due to decays in the marginal ice zone by anomalous
SST, T2m, and FAL in both cases. Consistent with the re-
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Figure 9. The actual SIC (a), predicted SICs (b–c), SIC anomaly (d), and errors between predicted and the actual SICs (e–f) in Septem-
ber 2012.

Table 3. The average relative variable importance for the RF and CNN models in September (2000–2017 average, 2007, and 2012). The
highest value is highlighted in bold.

sic_1y sic_1m ano_1y ano_1m SST T2m FAL v wind

Annual mean 1.098 1.107 1.086 1.032 1.059 1.029 1.080 1.018
RF Freezing season 1.080 1.091 1.087 1.045 1.053 1.011 1.071 1.019

Melting season 1.098 1.104 1.099 1.031 1.045 1.060 1.079 1.034

Annual mean 1.134 1.029 1.095 1.012 1.035 1.005 1.006 1.008
CNN Freezing season 1.145 1.063 1.113 1.026 1.042 1.024 1.015 1.026

Melting season 1.121 1.033 1.090 1.017 1.054 1.010 1.005 1.015

sults of the sensitivity analysis (Table 4), SIC-related vari-
ables were identified as important indicators in predicting
SICs (Deser and Teng, 2008). The other meteorological and
oceanographic variables tended to affect the SIC changes of
the marginal-zone ice, particularly the neighboring thin-ice
and no-ice zone (Stroeve et al., 2008; Chevallier et al., 2013;
Zhang et al., 2013).

4.5 Novelty and limitations

Our study developed a novel 1-month SIC prediction model
using the CNN deep-learning approach. The research find-
ings from this study can make a contribution towards fill-
ing the gaps in the research on short-term sea ice change
and prediction using a deep-learning approach (Grumbine,
1998; Preller and Posey, 1989). Our short-term SIC pre-
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Figure 10. Comparison of the prediction results of both models with eight input variables in the Beaufort Sea–Laptev Sea in September 2007.
The dotted black circle is the region showing higher prediction errors.
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Figure 11. Comparison of the prediction results of both models with eight input variables in the Barents Sea–Kara Sea in September 2012.
The dotted black circle is the region showing higher prediction errors.
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Figure 12. The prediction errors (predictions by CNN–NSIDC; %) and RMSE (%) from three prediction results in (a–c) September 2007
and (d–f) 2012: (a and d) original model, (b and e) with noises on SIC variables (sic_1y, sic_1m, ano_1y, and ano_1m), and (c and f) with
noises on the other variables.

Table 4. The average relative variable importance for the RF and CNN models in September (2000–2017 average, 2007, and 2012). The
highest value is highlighted in bold.

sic_1y sic_1m ano_1y ano_1m SST T2m FAL v wind

Average 1.095 1.069 1.137 1.067 1.072 1.148 1.165 1.070
RF 2007 1.136 1.122 1.177 1.118 1.225 1.258 1.207 0.996

2012 1.126 1.057 1.102 1.064 1.096 1.100 1.207 0.997

Average 1.090 1.035 1.056 1.005 1.009 1.000 1.002 1.004
CNN 2007 1.133 1.046 1.091 1.022 1.017 1.007 1.008 1.015

2012 1.078 1.054 1.041 1.020 1.040 1.034 1.023 1.028

diction model can provide valuable information, which can
be used in various decision-making processes in the mar-
itime industry and in research regarding sea ice forecasting
(Schweiger and Zhang, 2015). Notably, the non-linear learn-
ing architectures of the CNN model showed good prediction
accuracy based on the larger learning capacity and more con-

sistent temporal SIC prediction than the traditional machine-
learning approach (Wang et al., 2016; Liu et al., 2018).

However, there are some challenging limitations to the
proposed CNN model, particularly regarding the prediction
variables. First, this study did not consider the effects of a
longer timescale, or persistent effects, on sea ice changes
(Guemas et al., 2016). For example, the 2007 and 2012 sea
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ice minimums were caused by not only the anomalous warm
atmospheric conditions of the summer season but also by per-
sistently warm winter and spring seasons, which especially
affected the melting in the marginal ice zone (Devasthale
et al., 2013). The proposed CNN model could be used for
the longer prediction (i.e., 2- or 3-month prediction) in con-
sideration of the persistent effects of input variables such as
SST and T2m. Moreover, additional input variables that rep-
resent seasonal or longer-term variabilities in the Arctic en-
vironment should be considered in the proposed models. The
persistence of sea ice volume and atmospheric-circulation-
related variables would be suitable for the long-term sea ice
forecast (Guemas et al., 2016). Second, the sea ice thick-
ness is an important factor when predicting sea ice changes
because the thinner sea ice is relatively vulnerable to melt
(Stroeve et al., 2008; Chevallier et al., 2013; Zhang et al.,
2013). However, we did not consider sea ice thickness data
because of the limited availability of reliable sea ice thick-
ness products. Third, there is a well-known problem with
deep-learning models – interpretability. Because of compli-
cated and non-linear connections between hidden layers, the
deep-learning models are hard to interpret (Koh and Liang,
2017; Guidotti et al., 2018). Recent deep-learning studies
have attempted to report explainable results using various vi-
sualization approaches such as heat maps and occlusion maps
(Brahimi et al., 2017; Trigueros et al., 2018). The present
study explained the model using variable sensitivity analysis
as well as the inspection of the spatial distribution. However,
the model still has problems providing clear interpretations
of the non-linear relationships among variables.

5 Conclusions

The main purpose of this study was to develop a novel 1-
month SIC prediction model using the CNN approach. The
CNN model showed better prediction performance (MAE of
2.28 %, ACC of 0.98, RMSE of 5.76 %, nRMSE of 16.15 %,
and NSE of 0.97) than the persistence forecast (MAE of
4.31 %, ACC of 0.95, RMSE of 10.54 %, nRMSE of 29.17 %,
and NSE of 0.89) and RF models (MAE of 2.45 %, ACC
of 0.98, RMSE of 6.61 %, nRMSE of 18.64 %, and NSE of
0.96). The prediction accuracy in the melting season (June–
September; nRMSE of 19.09 %) was lower than the freezing
season (December–March; nRMSE of 14.08 %). The overall
prediction accuracy decreased in more recent years because
of the accelerated sea ice melting caused by global warming.
In two extreme cases, the CNN model yielded promising pre-
diction results with respect to RMSE as well as the spatial
distribution of SICs (less than 5 % RMSE). The prediction
errors normally occurred in the marginal ice zone, which has
higher sea ice anomalies. From the variable sensitivity analy-
sis using CNN, the SICs 1 year before were identified as the
most important factor in predicting sea ice changes. While
the SIC-related variables had large effects on SIC prediction

over ice-covered areas, the other meteorological and oceano-
graphic variables were more sensitive in predicting the SICs
in marginal ice zones.
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