14 research outputs found

    Polaronic effects and thermally enhanced weak superconductivity

    Get PDF

    Single-electron shuttle based on electron spin

    Get PDF
    A nanoelectromechanical device based on magnetic exchange forces and electron spin flips induced by a weak external magnetic field is suggested. It is shown that this device can operate as a new type of single-electron "shuttle" in the Coulomb blockade regime of electron transport

    Non-equilibrium Plasmons in a Quantum Wire Single Electron Transistor

    Full text link
    We analyze a single electron transistor composed of two semi-infinite one dimensional quantum wires and a relatively short segment between them. We describe each wire section by a Luttinger model, and treat tunneling events in the sequential approximation when the system's dynamics can be described by a master equation. We show that the steady state occupation probabilities in the strongly interacting regime depend only on the energies of the states and follow a universal form that depends on the source-drain voltage and the interaction strength.Comment: 4 pages, 3 figures. To appear in the Phys. Rev. Let

    Coulomb-promoted spintromechanics in magnetic shuttle devices

    Get PDF
    Exchange forces on the movable dot ("shuttle") in a magnetic shuttle device depend on the parity of the number of shuttling electrons. The performance of such a device can therefore be tuned by changing the strength UU of Coulomb correlations to block or unblock parity fluctuations. We show that by increasing UU the spintro-mechanics of the device crosses over, at U=Uc(T)U=U_c(T), from a mechanically stable regime to a regime of spin-induced shuttle instabilities. This is due to enhanced spin-dependent mechanical forces as parity fluctuations are reduced by a Coulomb blockade of tunneling and demonstrates that single-electron manipulation of single-spin controlled nano-mechanics is possible.Comment: 5 pages, 2 figures and a supplementary information fil

    Spin-Polaronic Effects in Electric Shuttling in a Single Molecule Transistor with Magnetic Leads

    Full text link
    Current-voltage characteristics of a spintromechanical device, in which spin-polarized electrons tunnel between magnetic leads with anti-parallel magnetization through a single level movable quantum dot, are calculated. New exchange- and electromechanical coupling-induced (spin-polaronic) effects that determine strongly nonlinear current-voltage characteristics were found. In the low-voltage regime of electron transport the voltage-dependent and exchange field-induced displacement of quantum dot towards the source electrode leads to nonmonotonic behavior of differential conductance that demonstrates the lifting of spin-polaronic effects by electric field. At high voltages the onset of electron shuttling results in the drop of current and negative differential conductance, caused by mechanically-induced increase of tunnel resistivities and exchange field-induced suppression of spin-flips in magnetic field. The dependence of these predicted spin effects on the oscillations frequency of the dot and the strength of electron-electron correlations is discussed.Comment: 8 pages, 4 figure

    Chiral symmetry breaking and the Josephson current in a ballistic superconductor-quantum wire-superconductor junction

    No full text
    We evaluate the Josephson current through a quasi-1D quantum wire coupled to bulk superconductors. It Is shown that the interplay of Rashba spin-orbit interaction and Zeeman splitting results in the appearence of a Josephson current even in the absence of any phase difference between the superconductors. In a transparent junction (D [asymptotically equal to] 1) at low temperatures this anomalous supercurrent Jan appears abruptly for a Zeeman splitting of the order of the Andreev level spacing as the magnetic field is varied. In a low transparency (D very much less than 1) junction one has Jan α root D under special (resonance) conditions. In the absence of Zeeman splitting the anomalous supercurrent disappears. We have investigated the influence of dispersion asymmetry induced by the Rashba interaction in quasi-1D quantum wires on the critical Josephson current and have shown that the breakdown of chiral symmetry enhances the supercurrent

    Rashba spin-orbit interaction in a ballistic Josephson junction

    No full text
    corecore