22 research outputs found

    Impurity resonance states in noncentrosymmetric superconductor CePt3SiCePt_{3}Si: a probe for Cooper-pairing symmetry

    Full text link
    Motivated by the recent discovery of noncentrosymmetric superconductors, such as CePt3SiCePt_{3}Si, CeRhSi3CeRhSi_{3} and CeIrSi3CeIrSi_{3}, we investigate theoretically the impurity resonance states with coexisting ss- and p-wave pairing symmetries. Due to the nodal structure of the gap function, we find single nonmagnetic impurity-induced resonances appearing in the local density of state (LDOS). In particular, we analyze the evolution of the local density of states for coexisting isotropic s-wave and p-wave superconducting states and compare with that of anisotropic s-wave and p-wave symmetries of the superconducting gap. Our results show that the scanning tunneling microscopy can shed light on the particular structure of the superconducting gap in non-centrosymmetric superconductors.Comment: 5 pages, 5 figures, typos corrected, final version in Phys. Rev.

    Spin and Charge Josephson effects between non-uniform superconductors with coexisting helimagnetic order

    Full text link
    We consider the spin and charge Josephson current between two non-uniform Fulde-Ferrel-Larkin-Ovchinnikov superconductors with helimagnetic order. We demonstrate that the presence of the helimagnetic phase generates a spin Josephson effect and leads to additional contributions to both single-particle and Josephson charge current. It is shown that for such systems the AC effect differs more radically from the DC effect than in the case of a BCS superconductor with helimagnetic order considered earlier in the literature [M. L. Kuli\'c and I. M. Kuli\'c, Phys. Rev. B {\bf 63}, 104503 (2001)] where a spin Josephson current has also been found. In our system the most interesting effect occurs in the presence of an external magnetic field and in absence of voltage, where we show that the charge Josephson current can be tuned to zero while the spin Josephson current is non-vanishing. This provides a well controlled mechanism to generate a spin supercurrent in absence of charge currents.Comment: final versio

    Finite temperature fluctuation-induced order and responses in magnetic topological insulators

    Get PDF
    We derive an effective field theory model for magnetic topological insulators and predict that a magnetic electronic gap persists on the surface for temperatures above the ordering temperature of the bulk. Our analysis also applies to interfaces of heterostructures consisting of a ferromagnetic and a topological insulator. In order to make quantitative predictions for MnBi2Te4 and for EuS-Bi2Se3 heterostructures, we combine the effective field theory method with density functional theory and Monte Carlo simulations. For MnBi2Te4 we predict an upwards NĂ©el temperature shift at the surface up to 15%, while the EuS-Bi2Se3 interface exhibits a smaller relative shift. The effective theory also predicts induced Dzyaloshinskii-Moriya interactions and a topological magnetoelectric effect, both of which feature a finite temperature and chemical potential dependence

    Diagnostics of atherosclerosis: Overview of the existing methods

    Get PDF
    Atherosclerosis was and remains an extremely common and serious health problem. Since the elderly are most at risk of cardiovascular risk, and the average life expectancy is increasing, the spread of atherosclerosis and its consequences increases as well. One of the features of atherosclerosis is its asymptomaticity. This factor makes it difficult to make a timely diagnosis. This entails the lack of timely treatment and even prevention. To date, in the arsenal of physicians, there is only a limited set of methods to suspect and fully diagnose atherosclerosis. In this review, we have tried to briefly describe the most common and effective methods for diagnosing atherosclerosis

    Structure and Mechanical Behavior of Heat-Resistant Steel Manufactured by Multilayer Arc Deposition

    No full text
    The manuscript demonstrates the structure and the mechanical behavior of a material manufactured by multilayer arc deposition. Three-dimensional printing was performed using OK Autrod 13.14 wire on a substrate of heat-resistant 12Cr1MoV steel in the standard gas metal arc welding (GMAW) mode and in the coldArc mode with reduced heat input. The printed materials have 40–45% higher strength and 50–70% lower ductility compared to the substrate. The microhardness of the printed materials is higher than the substrate, but it is reduced at the transition regions between the deposited layers. These regions have been studied using optical microscopy and digital image correlation. Such layer boundaries are an additional factor in reducing the plasticity of the material. The increase in strength and decrease in ductility for printed materials compared to the ferrite–pearlitic substrate is associated with a high cooling rate and the formation of a mixture of acicular and allotriomorphic ferrite, which have higher hardness. The structure of the obtained layers along the height is non-uniform and undergoes changes during the deposition of new layers. The main difference between the 3D printing modes is the reduced heat input in the coldArc mode, which results in less heat accumulation and faster cooling of the wall. Thus, a more dispersed and solid structure was formed compared with GMAW. It was concluded that the cooling rate and the level of heat input are the main factors affecting the structure formation (martensitic, bainitic, or ferritic), the height and quality of the surface, and the mechanical properties of the printed wall

    Proprotein Convertase Subtilisin/Kexin 9 as a Modifier of Lipid Metabolism in Atherosclerosis

    No full text
    Despite being the most common treatment strategy in the management of atherosclerosis and subsequent cardiovascular disease, classical statin therapy has certain disadvantages, including numerous side effects. In addition, a regimen with daily administration of the drug is hard to comply with. Thus, there is a need for modern and more efficient therapeutic strategies in CVD treatment. There is extensive evidence indicating that PCSK9 promotes atherogenesis through a variety of mechanisms. Thus, new treatment methods can be developed that prevent or alleviate atherosclerotic cardiovascular disease by targeting PCSK9. Comprehensive understanding of its atherogenic properties is a necessary precondition for the establishment of new therapeutic strategies. In this review, we will summarize the available data on the role of PCSK9 in the development and progression of atherosclerosis. In the last section, we will consider existing PCSK9 inhibitors

    Shambhala: a platform-agnostic data harmonizer for gene expression data

    No full text
    Abstract Background Harmonization techniques make different gene expression profiles and their sets compatible and ready for comparisons. Here we present a new bioinformatic tool termed Shambhala for harmonization of multiple human gene expression datasets obtained using different experimental methods and platforms of microarray hybridization and RNA sequencing. Results Unlike previously published methods enabling good quality data harmonization for only two datasets, Shambhala allows conversion of multiple datasets into the universal form suitable for further comparisons. Shambhala harmonization is based on the calibration of gene expression profiles using the auxiliary standardization dataset. Each profile is transformed to make it similar to the output of microarray hybridization platform Affymetrix Human Gene. This platform was chosen because it has the biggest number of human gene expression profiles deposited in public databases. We evaluated Shambhala ability to retain biologically important features after harmonization. The same four biological samples taken in multiple replicates were profiled independently using three and four different experimental platforms, respectively, then Shambhala-harmonized and investigated by hierarchical clustering. Conclusion Our results showed that unlike other frequently used methods: quantile normalization and DESeq/DESeq2 normalization, Shambhala harmonization was the only method supporting sample-specific and platform-independent biologically meaningful clustering for the data obtained from multiple experimental platforms
    corecore