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Finite temperature fluctuation-induced order and responses in magnetic topological insulators
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We derive an effective field theory model for magnetic topological insulators and predict that a magnetic
electronic gap persists on the surface for temperatures above the ordering temperature of the bulk. Our analysis
also applies to interfaces of heterostructures consisting of a ferromagnetic and a topological insulator. In order
to make quantitative predictions for MnBi2Te4 and for EuS-Bi2Se3 heterostructures, we combine the effective
field theory method with density functional theory and Monte Carlo simulations. For MnBi2Te4 we predict an
upwards Néel temperature shift at the surface up to 15%, while the EuS-Bi2Se3 interface exhibits a smaller
relative shift. The effective theory also predicts induced Dzyaloshinskii-Moriya interactions and a topological
magnetoelectric effect, both of which feature a finite temperature and chemical potential dependence.
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Introduction. Since the first experimental observation of
the quantum anomalous Hall effect (QAHE)—the appearance
of quantized Hall conductance at zero magnetic field—in thin
films of the topological insulator (TI) Bi2Se3 doped with
magnetic atoms at temperatures below 1 K [1], magnetic
topological materials have been at the scientific forefront both
experimentally and theoretically [2–11]. The QAHE requires
a three-dimensional TI in which long-range magnetic order
breaks the time-reversal symmetry, via ferromagnetic [12–15]
or antiferromagnetic ordering [16]. Driven by the major
goal to realize quantization of conductance at room tem-
perature, two distinct directions of material development
have triggered much of the recent experimental progress: the
successful fabrication of atomically sharp interfaces of fer-
romagnetic and topological materials, in particular of EuS
and Bi2Se3 [12–14], and the growth of intrinsically mag-
netic TIs such as MnTe(Bi2Te3)m with m � 1 [17–22] and
MnSb2Te4 [23,24] as highly ordered single crystals or their
intrinsic heterostructures [25,26].

Conceptually, a perfectly quantized Hall conductivity of
e2/h arises at zero temperature when the magnetization cou-
ples to the topological Dirac-type TI surface states, opening
up a gap there in which then the chemical potential μ must
lie (see Fig. 1). As a bonus, fermionic quantum fluctua-
tions induce a concomitant linear topological magnetoelectric
effect (TME), which couples electric fields directly to the
magnetization and, vice versa, magnetization dynamics to
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electrical polarization [27,28]. At zero temperature for μ

outside the gap both Hall conductance and TME fail to be
quantized [2,6,29], tending to vanish as μ grows. Neverthe-
less, this particular situation has the interesting feature, that a
Dzyaloshinskii-Moriya interaction (DMI) between magnetic
degrees of freedom emerges, opening the path towards the for-
mation of various skyrmionlike topological magnetic textures
at the surface [30,31], observed also experimentally [32].

The goal to realize the QAHE, TME, and possibly even a
DMI at room temperature ties into a number of fundamental
and practical questions. The first is how in an ideal situation
the surface magnetic ordering temperature Tc is affected by
coupling to the topological edge states—it has been suggested
that this coupling can greatly enhance Tc [12,33]. Subse-
quently the question is how temperature fluctuations affect the
conductance quantization, TME, and DMI for the different
relevant regimes of μ. Particularly interesting would be the
existence of a temperature regime in which both DMI and
TME are sizable, in which case the TME endows external
magnetic and electric fields with novel types of access to
DMI-induced skyrmions.

Despite several theoretical and experimental developments
in recent years, a number of fundamental questions remain to
be answered. For instance, although a remarkable enhance-
ment of Tc at the interfaces of certain ferromagnetic insulators
(FMIs) have been reported [12,34], recent works [35,36] ques-
tion the validity of these findings for the specific case of EuS
proximate to either Bi2Se3 or (Bi, Sb)2Te3. Furthermore, a
recent experimental work [35] indicates that the topological
electronic states at the interface do not interact strongly with
ferromagnetism for the case of a EuS-Bi2Se3 heterostructure.
Additionally, in the family of magnetic TIs MnTe(Bi2Te3)m,
different works that do find a surface spectrum gapped below
the Néel temperature also observe the persistence of the gap
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in the paramagnetic phase [17,22,37], it being unclear whether
or not these observations result from the intrinsic magnetism.

Here, we develop the finite temperature continuum field
theory to address the questions concerning the magnetic phase
transitions and dynamics at finite temperature, and apply these
results to several experimentally relevant material systems,
using Monte Carlo simulations (MCSs) and density functional
theory (DFT) based approaches to obtain quantitative results.
Using a minimal model for the coupling of the Dirac fermions
to the magnetic Hamiltonian, we show that in a temperature
window where bulk magnetism is absent, an out-of-plane
surface magnetization can still be nonzero and induce a gap in
the Dirac spectrum. As a consequence, the AHE and TME can
survive in a certain temperature range above the bulk Tc. How-
ever, for the experimentally relevant materials and material
combinations (EuS-Bi2Se3, MnBi2Te4), the coupling to the
topological surface states enhances the bulk Tc not more than
15%, even under the most favorable conditions. Significant
enhancements would require using TIs with a much lower
Fermi velocity of the Dirac cone. In addition, at finite μ we
establish the existence of a temperature regime displaying
both a substantial fluctuation-induced DMI and TME, even
if its Hall conductivity is strongly renormalized, with poten-
tially interesting consequences for skyrmion manipulation and
transport.

Saddle-point and induced order. To determine the shift in
magnetic ordering temperature due to coupling of the mag-
netic moments to the fluctuating Dirac fermions, we consider
the following minimal model Hamiltonian,

HDirac = [h̄vFd(−i∇) − J0n(r, t )] · σ − eφ(r, t ) − μ, (1)

where the Dirac fermions couple to the magnetization via a
magnetic exchange interaction J0, σ is the Pauli matrix vector,
and n(r, t ) the unit vector field representing the magnetization
direction at r = (x, y). The operator d(−i∇) has the property
d2 = −∇2, where ∇ = (∂x, ∂y, 0). Additionally, an electric
potential φ has been introduced, which includes contributions
of an externally applied electric field and an internal long-
range Coulomb interaction as well.

The fermionic quantum fluctuations of the Dirac Hamilto-
nian (1) are accounted for by the imaginary time path integral,

ZF = e−βFF(n) =
∫

D[�†, �]e− 1
h̄ S[�†,�], (2)

S =
∫ h̄β

0
dτ

∫
d2r �†(h̄∂τ + HDirac)�, (3)

where � = (�↑, �↓)T is a spinor of Grassmann fields ob-
tained from the second-quantized Hamiltonian [38]. The
above partition function defines a free-energy functional
FF(n) which provides an additional free energy to the one of
the magnetic free energy. As a minimal model leading to the
latter, we consider the magnetic Hamiltonian,

HM =
∫

d2r
[J

2
(∇n)2 − K

2
n2

z

]
, (4)

where J > 0 is the exchange energy and K > 0 is the
anisotropy energy density (per unit area). The magnetic

partition function is given by the path integral,

ZM =
∫

DnDλe− 1
h̄ SB− 1

h̄

∫ h̄β

0 dτ[HM+ i
2

∫
d2rλ(n2−1)], (5)

where SB is the Berry phase that arises in the construction of
the spin coherent state path integral [39], and λ is a Lagrange
multiplier field enforcing the constraint n2 = 1.

Keeping the magnetic fluctuations classical, we obtain
the following effective Hamiltonian after integrating out the
Gaussian fluctuations nx and ny, along with the fermions,

Heff = kBT Tr ln(−J∇2 + iλ)

− kBT Tr ln[h̄∂τ − μ + h̄vFd(−i∇) · σ − J0nzσz]

+ 1

2

∫
d2r

[
J (∇nz )2 − Kn2

z + iλ
(
n2

z − 1
)]

. (6)

Variation with respect to nz leads to the saddle-point equation,

(λ0 − K )nz = 2J2
0 nzkBT

∑
n

∫
d2q

(2π )2

1

(h̄ωn + iμ)2 + E2
q

,

(7)
where Eq =

√
(h̄vFq)2 + m2, ωn = πkBT (2n + 1)/h̄ is a

fermionic Matsubara frequency, and we have defined m2 =
J2

0 n2
z . Equation (7) is solved together with the saddle-point

equation for λ, which occurs at iλ = λ0,

n2
z = 1 − 2kBT

J

∫
d2q

(2π )2

1

q2 + λ0/J
. (8)

Setting J0 = 0 in Eq. (7) reduces the saddle-point equations
to one of a classical ferromagnet with easy-axis anisotropy. In
this special case the ordered phase immediately implies λ0 =
K and from Eq. (8) it is straightforward to obtain the critical
temperature Tc by demanding that nz(Tc) = 0, yielding

kBTc = πJ

ln
(
�s

√
J
K

) , (9)

where a cutoff �s � √
K/J has been introduced. Note that

the above is consistent with the Mermin-Wagner theorem in
the limit K → 0.

Our aim is to calculate the shift of this critical temperature
when J0 �= 0, i.e., accounting for the fermionic quantum fluc-
tuations. After explicitly evaluating the Matsubara sum and
integral, Eq. (7) becomes

λ0 = − J2
0 kBT

2π (h̄vF)2

[
ln

(
1 + e− |m|−μ

kBT
) + ln

(
1 + e− |m|+μ

kBT
)]

+ K + J2
0 �F

2π h̄vF
, (10)

where the cutoff �F � |m|/(h̄vF). The chemical potential
is temperature dependent and can be obtained by fixing the
particle density. At the critical temperature T = T̃c of the
interacting system we demand that m = 0 and obtain

λ0c = K + J2
0 �F

2π h̄vF
− J2

0 kBT̃c

2π (h̄vF)2
ln[2 + 2 cosh(μc/kBT̃c)],

(11)
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where μc = μ(T̃c). This finally yields the critical temperature
shift relative to the situation where fermions are absent,

Tc − T̃c

T̃c
= kBTc

2πJ
ln

(
K

λ0c

)
. (12)

Since the cutoff is large, it is clear that the argument of the
logarithm in Eq. (12) is smaller than unity, and therefore T̃c >

Tc in all cases. From Eqs. (11) and (12) we see that smaller
values of vF favor larger shifts of the critical temperature.

Material specifics. In order to make quantitative predic-
tions for the material systems of interest, we need to determine
the values of the coupling parameters and cutoffs appearing in
the continuum theory. We base such values on ab initio and
Monte Carlo calculations, which we find to be consistent with
available experimental data.

Based on the DFT for a finite slab, for MnBi2Te4 we
find the Fermi velocity as h̄vF = 2.3 ± 0.2 eV Å and the
coupling J0 ≈ 50 meV, whereas for EuS-Bi2Se3, we consider
h̄vF ≈ 3.3 eV Å and J0 ≈ 54 meV [13,40,41]. Note, the value
of J0 was derived from the gap size in the Dirac dispersion
assuming its origin is purely magnetic. In reality, higher-
order effects such as the hybridization of the surface fermions
with the bulk electronic states of MnBi2Te4 or EuS may also
influence the gap such that the actual magnetic gap and corre-
spondingly J0 might be smaller.

For the fermionic cutoff �F, we consider that the average
surface density of a completely filled band is 1/A, with A the
surface unit cell area. Since our model describes two surface
bands, we fix �F such that n(μ = 0) = 1/A. Electron-hole
symmetry of the model then implies that n(μ → ∞) = 2/A.

To set the anisotropy K and stiffness J of the mag-
netization field, we first build an anisotropic Heisenberg
lattice model which we then map to Eq. (4). As the on-site
anisotropy depends crucially on the thickness of the FMI
layer in the EuS-Bi2Se3 system [12], while the Mn layers
in MnBi2Te4 are well separated with relatively small out-of-
plane exchange couplings [17,42], we consider the magnetic
subsystem to be monolayer thick. The corresponding lattice in
both cases is a two-dimensional triangular lattice spanned by
Mn in MnBi2Te4 and Eu on the EuS(111) surface [12]. The
considered magnetic interactions comprise nearest-neighbor
ferromagnetic exchange couplings J, and an effective on-site
out-of-plane anisotropy K. J and K follow from J and K
taking the continuum limit [43].

For MnBi2Te4, we obtain from DFT calculations K ≈
0.073 meV, and J ≈ 0.18 meV, in good agreement with earlier
reported values [44]. For monolayer EuS, on the other hand,
K was obtained by extrapolating the data for the 20-nm-thick
Bi2Se3 layer in the EuS-Bi2Se3 heterostructures in Ref. [12]
to the EuS monolayer thickness. We obtain K ≈ 0.13 meV.
The exchange coupling for the monolayer has been previously
estimated to be J = 0.017 meV [45]. It is interesting that these
two material systems cover a broad range of K/J (from ∼0.4
in the Mn-based compound to ∼7.6 in the EuS-based system).

Last, the spin cutoff was fixed such that the critical temper-
ature of the continuum model (without fermions) matches the
critical temperature of the corresponding Heisenberg model.
To obtain the latter, classical MCS for the lattice model were
carried out [see the Supplemental Material (SM) [43] for

FIG. 1. Left: Symmetry breaking induced by the proximity ef-
fect. An exchange coupling is induced across the interface between
a FMI and a TI. The FMI polarizes the TI surface by the proximity
effect and gaps the surface spectrum as, e.g., EuS-Bi2Se3 heterostruc-
tures [13]. Right: Intrinsic spontaneous symmetry breaking. Here, the
TI is itself a magnetic insulator such as, e.g., MnBi2Te4 [17].

details]. For the EuS-Bi2Se3 and MnBi2Te4 system, we ob-
tain T latt

c ≈ 5.8 K and ≈17.0 K, respectively. Based on these
values, we fix �s via Eq. (9).

Finally, using Eq. (12), we obtain (Tc − T̃c)/T̃c = 10.9%
and 14.7% for EuS-Bi2Se3 and MnBi2Te4, respectively.
Note that the compound having a smaller Fermi velocity
(MnBi2Te4) shows indeed a larger shift of the critical tem-
perature (recall that in both cases J0 is similar).

Fluctuations around the saddle point. The question on how
the DMI, TME, and Hall conductivity evolve with temper-
ature and chemical potential requires considering the effect
of magnetic fluctuations in the fermionic determinant result-
ing from integrating out the fermions. Introducing n(r, t ) =
nzẑ + δn(r, t ) we can determine the effective action around
the saddle-point approximation up to quadratic order in the
fluctuations.

The reason for the appearance of the DMI term [30] is that
the magnetization fluctuations effectively break the inversion
symmetry of our starting Hamiltonian. As a consequence, this
yields a DMI contribution to the magnetic free energy,

FDMI = i
D

2

∫
d2r δn · [d(−i∇) × δn], (13)

where

D = − J2
0

4π h̄vF

sinh(βμ)

cosh(βμ) + cosh(βm)
. (14)

It is important to emphasize that the DMI term is not intro-
duced in an ad hoc way—it is generated by charge fluctuations
coupling to the magnetic moments at the interface. The DMI
vanishes at the neutrality point and is nonzero away from
it. This creates the possibility of manipulating the DMI by
controlling the chemical potential, for instance, by gating.
If we take the mass m to have a mean-field-like behavior
m(T ) = J0

√
1 − T/T̃c, we find the zero temperature value for

the DMI D(T → 0) = − J2
0

4π h̄vF
sgn(εF)H (|εF| − |J0|) which

demonstrates that the DMI kicks in when the Fermi energy εF

surpasses a threshold given by the exchange coupling constant
J0. This feature of the generated DMI can also be seen in
Fig. 2(a) where we show the whole temperature range for dif-
ferent values of the chemical potential with an estimated zero
temperature exchange coupling constant of J0/kBT̃c ≈ 29.1
based on our findings for the MnBi2Te4 system. We further see
that the lower the temperature gets, the narrower the range for
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FIG. 2. (a) Normalized massive DMI coupling strength D̃ =
D/D̄ and (b) normalized topological mass σ̃ = σ/σ̄ , both as a func-
tion of temperature and chemical potential. The normalizations are
set to D̄ = −J2

0 /4π h̄vF and σ̄ = e2/2h, respectively. The DMI is
only present when the chemical potential exceeds the gap (metallic
regime). On the contrary the topological mass only exists for a
chemical potential inside the gap (insulating regime).

the chemical potential becomes in which there still is a finite
DMI. Moreover, we see that the step-function behavior of the
generated DMI at zero temperature approximately extends to
the whole temperature range as the DMI is only present when
the chemical potential exceeds the magnetic gap, meaning it
exists only in the metallic regime.

Finally, we determine the fluctuation-induced effective
Chern-Simons (CS) action,

Scs
eff = σ

2

∫
d (ct )

∫
d2r εμνλAμ∂νAλ, (15)

where we have defined the covariant three-potential Aμ =
( φ

c ,± J0
evF

d(δn)). The electric potential enters in the time com-
ponent as usual and the magnetization fluctuations δn act
as the vector potential A in the spatial components. Note
that the “±” applies to the different choices for the vector
d. The coefficient σ arising in Eq. (15) leads to the gap in
magnetic susceptibility, in a mechanism closely related to
the well-known topologically massive photons in a Maxwell-
Chern-Simons theory [46]. In our case this topological mass
is given by

σ = e2

2h

sinh(βm)

cosh(βμ) + cosh(βm)
. (16)

We recall here that the topological mass arising in the ef-
fective free energy is in general not identical to the Hall
conductivity—these quantities differ, for instance, in the
metallic regime [6,29], something that is more easily seen in
the zero temperature limit. Indeed, for T = 0 the topological
mass and Hall conductivity are given by [6] σ (T = 0) =
e2sgn(J0)H (|J0| − εF)/(2h) and σxy(T = 0) = e2{[sgn(J0) −
J0/εF]H (|J0| − εF) + J0/εF}/(2h), respectively. These zero
temperature expressions involving the Heaviside step func-
tion are identical only when εF < |J0|. In fact, σ (T = 0)
vanishes in the metallic regime while σxy is nonzero. This
occurs because the Hall conductivity is calculated from the
Kubo formula where one first takes the limit q → 0 and then
ω → 0, while in case of the topological mass these limits are
taken simultaneously. The CS action (15) contains the TME

FIG. 3. Crossover of the normalized topological mass σ̃ and
DMI coupling strength D̃ as a function of the chemical potential at
different temperatures. For a vanishing temperature both quantities
are step functions. Increasing the temperature causes the step func-
tions to smear out, making coexistence possible. The two quantities
always sum up to unity at a given value for the chemical potential.

contribution to the free energy,

FTME = i
J0σ

evF

∫
d2r δn · [ẑ × d(−i∇)φ]. (17)

To compare its features to the ones of the DMI we also
illustrate its dependency on temperature and chemical poten-
tial in Fig. 2(b). Once more it shows that at zero temperature
we have a step-function behavior which also approximately
extends to finite temperatures. Consequently, the topological
mass only exists when the chemical potential lies inside the
magnetic gap and is nearly quantized in the bordering regions
resulting into plateaus. In comparison to the generated DMI
we can see in Fig. 3 that there is a very narrow region where
both functions overlap. As a result, the desired simultaneous
occurrence of the DMI and the CS action requires fine tuning.

However, upon closer inspection, a different connection
between the two terms appears. It turns out that the tem-
perature functions inside both terms complement each other
almost perfectly in a temperature and chemical potential plot,
as also can be seen for exemplary temperatures in Fig. 3. The
two functions are adding up to one creating a plateau that even
traverses the chasm that both functions showed individually in
the vicinity where the chemical potential crossed the magnetic
gap. This means that at the time one of the terms diminishes,
the respective other term grows in size equal to the loss of
the other, creating a direct correspondence between them. We
point out that besides the DMI and CS terms, other interesting
terms appear in the effective action, as is shown in explicitly
in the SM [43].

Conclusion. We have considered a minimal model for mag-
netic topological insulators that capture a wealth of interesting
properties of the surface of materials such as MnTe(Bi2Te3)m

with m � 1 [17,19,21,22] and MnSb2Te4 [23,24], and also
at the interfaces of the heterostructures EuS-Bi2Se3 [12–14].
An important main result of our analysis is the prediction of
the survival of the electronic gap on the surface/interface for
temperatures above the bulk ordering temperature. In order to
provide quantitative results to be compared with experiment,
we have combined the effective field theory analysis with DFT
and MCS results applied specifically to MnBi2Te4 and the
bilayer system EuS-Bi2Se3. We also predict that temperature-
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dependent DMI and TME terms are induced by fluctuations.
The latter may give rise to new magnetic phenomena at the
surface of magnetic TIs, including the interesting possibility
of manipulating skyrmions by external or internal electrical
fields.
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