13 research outputs found

    Pathways and mechanisms of offshore water intrusions on the Espírito Santo Basin shelf (18°S–22°S, Brazil)

    Get PDF
    Author Posting. © American Geophysical Union, 2016. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 121 (2016): 5134–5163, doi:10.1002/2015JC011468.The pathways and physical mechanisms associated with intrusions of cold, nutrient-rich South Atlantic Central Water (SACW) on the continental shelf of the Espírito Santo Basin (ESB), off southeast Brazil (18°S–22°S), are investigated. To this end, a set of process-oriented, Primitive-Equation (PE) numerical models are used, together with an independent and more complete PE model, available observations and simple theoretical ideas. SACW enters the model ESB shelf mostly through two preferential pathways along the Tubarão Bight (TB, 19.5°S–22°S). These pathways are found to be locations where an equatorward along-isobath pressure gradient force (PGFy*) of inline image m s−2) develops in response to steady wind forcing. This equatorward PGFy* is essentially in geostrophic balance, inducing onshore flow across the shelf edge, and most of the shelf proper. The Brazil Current (BC) imparts an additional periodic (in the along-shelf direction) PGFy* on the shelf. The intrinsic pycnocline uplifting effect of the BC in making colder water available at the shelf edge is quantified. The BC also induces local intrusions by inertially overshooting the shelf edge, consistent with estimated Rossby numbers of inline image0.3–0.5. In addition, the planetary β-effect is related to a background equatorward PGFy*. A modified Arrested Topographic Wave model is shown to be a plausible rationalization for the shelf-wide spreading of the pressure field imparted by the BC at the shelf edge. The deep-ocean processes examined here are found to enhance the onshore transport of SACW, while wind forcing is found to dominate it at leading order.The first author acknowledges support from the S~ao Paulo Research Foundation (Fundac¸~ao de Amparo a Pesquisa do Estado de S~ao Paulo, FAPESP), via grants 2013/11465–4 and 2014/03451–6. Kenneth Brink acknowledges support from NSF (grant OCE-1433953). Ilson da Silveira acknowledges support from FAPESP 08/58101–9, CNPq 3071122/2010–7, and CAPES 2201/2014. Wilton Arruda acknowledges support from CNPq (MCTI/CNPq/Universal 14/2014, grant 443162/2014–0), and from INCT–Mar– COI, MCTI/CNPq grant 565062/2010–7. Renato Martins acknowledges support from Petr oleo Brasileiro S/A (AMBES Project, PT–133.01.10636).2017-01-3

    Introduction to advances in physical oceanography: a tribute to Prof. Affonso da Silveira Mascarenhas, Jr. (1938-2017)

    No full text
    This special article collection of Ocean and Coastal Research is dedicated to Prof. Affonso da Silveira Mascarenhas Jr. and includes eight scientific contributions from a few of his friends and colleagues. This introduction to the volume includes a brief tribute to Affonso followed by a short outline of the scientific manuscripts

    Filaments, Fronts and Eddies in the Cabo Frio Coastal Upwelling System, Brazil

    No full text
    We investigate the dynamics of meso- and submesoscale features of the northern South Brazil Bight shelf region with a 500-m horizontal resolution regional model. We focus on the Cabo Frio upwelling center, where nutrient-rich, coastal waters are transported into the mid- and outer shelf, because of its importance for local and remote productivity. The Cabo Frio upwelling center undergoes an upwelling phase, from late September to March, and a relaxation phase, from April to early September. During the upwelling phase, an intense front around 200 km long and 20 km wide with horizontal temperature gradients as large as 8 ∘C over less than 10 km develops. A surface-intensified frontal jet of 0.7 ms−1 in the upper 20 m and velocities of around 0.3 ms−1 reaching down to 65 m depth makes this front a preferential cross-shelf transport pathway. Large vertical mixing and vertical velocities are observed within the frontal region. The front is associated with strong cyclonic vorticity and strong variance in relative vorticity, frequently with O(1) Rossby numbers. The dynamical balance within the front is between the pressure gradient, Coriolis and vertical mixing terms, which are induced both by the winds, during the upwelling season, and by the geostrophic frontal jet. Therefore, the frontal dynamics may be largely described as sum of Ekman and turbulent thermal wind balances. During the upwelling phase, a mix of barotropic and baroclinic instabilities dominates in the upwelling center. However, these instabilities do not lead to the local formation of coherent eddies when the front is strong. In the relaxation phase, the front vanishes, and the water column becomes less stratified. The interaction between eastward coastal currents generated by sea level variability, coastal intrusions of the Brazil Current, and sporadic wind-driven, coastal upwelling events induce the formation of cyclonic eddies with diameters of, approximately, 20 km. They are in gradient-wind balance and propagate along the 100-m isobath on the shelf. During this phase baroclinic instability dominates. Cold filaments with widths of 2 km are formed due to straining and stretching of cold, coastal temperature anomalies. They last for a few days and are characterized by downwelling as large as 1 cms−1. The turbulent thermal wind balance provides a good first order estimate of the dynamical balance within the filament, but vertical and horizontal advection are shown to be important. To our knowledge, this is the first account of these smaller scale features in the region. Because these meso- and submesoscale features on the shelf heavily affect the water properties crucial to productivity of the South Brazil Bight, it is important to take these features into account for a better understanding of the functioning of this ecosystem and its resilience to both direct human activities as well as to climate change

    Can the Intermediate Western Boundary Current recirculation trigger the Vitória Eddy formation?

    No full text
    Abstract South of the Vitória-Trindade Ridge, a seamount chain off East Brazil, the Brazil Current (BC) meanders cyclonically within Tubarão Bight, occasionally forming the Vitória Eddy. It was recently found that the Intermediate Western Boundary Current (IWBC), which flows equatorward below the BC, cyclonically recirculate within Tubarão Bight. We present an analysis of AVISO observations that suggest that the Vitória Eddy formation is conditioned by the strength of the BC upstream of Tubarão Bight. A weak BC is prone to local meandering and eddy formation in the bight, while a strong BC suppresses eddy formation in the bight but triggers downstream meander growth. To study the effects of the IWBC recirculation on the BC meandering and the Vitória Eddy formation, we formulate a simple two-layer quasi-geostrophic model. In the model, the BC is represented by a meridional jet in the upper layer and the IWBC recirculation is a steady eddy in the lower layer. The lower-layer eddy effectively acts as a topographic bump, affecting the upper-layer jet via the stretching term ψ 2 / R d 2 ψ2/Rd2\psi _{2}/{R_{d}^{2}} , where ψ2 is the lower-layer streamfunction and Rd is the baroclinic deformation radius. Based on the AVISO sea-surface height data and previous observational studies, we define a stationary eddy and reference jet. We conduct a number of initial-value problem experiments varying the upper-layer jet speed. A weak upper-layer jet slowly meanders and develops a cyclone above the lower-layer eddy. As we increase the jet velocity, the meandering is faster and the cyclone is larger. But a too-strong jet has an opposite effect: the potential vorticity anomalies induced by the lower-layer eddy are quickly swept away, leading to explosive downstream meander growth; no cyclone is formed above the lower-layer eddy. In all cases, the initial meandering trigger is a linear process (the steering of the upper-layer jet by the lower-layer eddy). But even when the upper-layer jet is weak, nonlinearity quickly becomes important, dominating the dynamics after 10 days of simulation. The downstream meander growth is fully nonlinear. Our idealized QG model confirms that the IWBC recirculation can trigger the Vitória Eddy formation and elucidates the mechanisms involved in this process

    A two-layer approximation to the Brazil Current-Intermediate Western Boundary Current System between 20 degrees S and 28 degrees S

    No full text
    It has been shown that the vertical structure of the Brazil Current (BC)-Intermediate Western Boundary Current (IWBC) System is dominated by the first baroclinic mode at 22 degrees S-23 degrees S. In this work, we employed the Miami Isopycnic Coordinate Ocean Model to investigate whether the rich mesoscale activity of this current system, between 20 degrees S and 28 degrees S, is reproduced by a two-layer approximation of its vertical structure. The model results showed cyclonic and anticyclonic meanders propagating southwestward along the current axis, resembling the dynamical pattern of Rossby waves superposed on a mean flow. Analysis of the upper layer zonal velocity component, using a space-time diagram, revealed a dominant wavelength of about 450 km and phase velocity of about 0.20 ms(-1) southwestward. The results also showed that the eddy-like structures slowly grew in amplitude as they moved downstream. Despite the simplified design of the numerical experiments conducted here, these results compared favorably with observations and seem to indicate that weakly unstable long baroclinic waves are responsible for most of the variability observed in the BC-IWBC system. (C) 2009 Elsevier Ltd. All rights reserved.Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP)[1998/14850-4]Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP)[1998/0572-2

    On the steadiness and instability of the Intermediate Western Boundary Current between 24 degrees and 18 degrees S

    No full text
    Author Posting. © American Meteorological Society, 2019. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 49(12), (2019): 3127-3143, doi: 10.1175/JPO-D-19-0011.1.The Intermediate Western Boundary Current (IWBC) transports Antarctic Intermediate Water across the Vitória–Trindade Ridge (VTR), a seamount chain at ~20°S off Brazil. Recent studies suggest that the IWBC develops a strong cyclonic recirculation in Tubarão Bight, upstream of the VTR, with weak time dependency. We herein use new quasi-synoptic observations, data from the Argo array, and a regional numerical model to describe the structure and variability of the IWBC and to investigate its dynamics. Both shipboard acoustic Doppler current profiler (ADCP) data and trajectories of Argo floats confirm the existence of the IWBC recirculation, which is also captured by our Regional Oceanic Modeling System (ROMS) simulation. An “intermediate-layer” quasigeostrophic (QG) model indicates that the ROMS time-mean flow is a good proxy for the IWBC steady state, as revealed by largely parallel isolines of streamfunction ψ⎯ and potential vorticity Q⎯; a ψ⎯−Q⎯ scatter diagram also shows that the IWBC is potentially unstable. Further analysis of the ROMS simulation reveals that remotely generated, westward-propagating nonlinear eddies are the main source of variability in the region. These eddies enter the domain through the Tubarão Bight eastern edge and strongly interact with the IWBC. As they are advected downstream and negotiate the local topography, the eddies grow explosively through horizontal shear production.We thank Frank O. Smith for copy editing and proofreading this manuscript. This study was financed in part by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—CAPES, Brazil—Finance Code 001 and by Projeto REMARSUL (Processo CAPES 88882.158621/2014-01), Projeto VT-Dyn (Processo FAPESP 2015/21729-4) and Projeto SUBMESO (Processo CNPq 442926/2015-4). Rocha was supported by a WHOI Postdoctoral Scholarship.2020-06-0

    Hydrographic structure of the continental shelf in Santos Basin and its causes: The SANAGU and SANSED campaigns (2019)

    No full text
    This study describes the hydrography and water masses of the Santos Basin Continental Shelf (SBCS) during two hydrographic campaigns (SANAGU, SANSED) in 2019. Coastal Water (CW) is the dominant water mass in the southern portion of the SBCS, with relatively low salinity values (S<35.5 g kg–1), and satellite data show that local precipitation and river discharge could not account for the low salinity observed during the cruises in the southern region of the domain. The low salinity observed is explained by the transport from the south influenced by Subtropical Shelf Water (STSW), which was influenced by the La Plata River discharge. In the northern region of the SBCS, the South Atlantic Central Water (SACW) dominates the bottom layers of the water column, with the wind playing a major role in the uplift of this water mass, as evidenced by a wind impulse analysis. In this part of the shelf, Tropical Water (TW) was the second water mass in volume and occupied the surface layers and offshore the shelf. CW is restricted to a thin surface layer, which reaches distances of a few kilometers from the coast. Our analysis show the differences in the hydrographic structure of the SBCS and suggests that the SBCS can be divided in two regions with distinct characteristics: 1) the area southwest of São Sebastião, where the hydrographic parameters were modulated by the presence of the Subtropical Shelf Water (STSW); 2) the area northeast of São Sebastião, where the uplifting of SACW was the dominant process
    corecore