11 research outputs found

    Duplication of the proteolipid protein gene is the major cause of Pelizaeus-Merzbacher disease

    No full text
    Background/Objective: Pelizaeus-Merzbacher disease (PMD), an X-linked recessive dysmyelination disorder, is caused by mutations in the proteolipid protein (PLP) gene. However, missense mutations were only found in a fraction of PMD patients, even in families that showed linkage with the PLP locus on Xq22. Here we describe the use of an extended protocol that includes screening for both missense mutations and duplications. Method: Two groups of patients were analyzed, one group with 10 independent PMD families and one group with 24 sporadic patients suspected of PMD. Missense mutations in the PLP gene were identified by sequencing. PLP gene duplications were detected by quantitative polymerase chain reaction and/or Southern blot analysis. Results: Sequencing of the PLP gene revealed four mutations in group i and one mutation in group 2. However, inclusion of duplication analysis in the screening protocol raised the amount of mutations found in group 1 from 40 to 90%, and in group 2 from 4 to 25%. Conclusions: These results demonstrate that duplications of the PLP gene are the major cause of PMD. Furthermore, it appears that the phenotype resulting from PLP duplications is relatively mild, and that many probands are nontypical PMD patients

    A (G-to-A) mutation in the initiation codon of the proteolipid protein gene causing a relatively mild form of Pelizaeus-Merzbacher disease in a Dutch family

    No full text
    Pelizaeus-Merzbacher disease (PMD) is an X-linked recessive disorder that is characterized by dysmyelination of the central nervous system resulting from mutations in the proteolipid protein (PLP) gene. Mutations causing either overexpression or expression of a truncated form of PLP result in oligodendrocyte cell death because of accumulation of PLP in the endoplasmic reticulum. It has therefore been hypothesized that absence of the protein should result in a less severe phenotype. However, until now, only one patient has been described with a complete deletion of the PLP gene. We report a Dutch family with a relatively mild form of PMD, in which the disease cosegregates with a (G-to-A) mutation in the initiation codon of the PLP gene. This mutation should cause the total absence of PLP and is therefore in agreement with the hypothesis that absence of PLP leads to a mild form of PMD

    The diagnostic yield of whole-exome sequencing targeting a gene panel for hearing impairment in the Netherlands

    No full text
    Hearing impairment (HI) is genetically heterogeneous which hampers genetic counseling and molecular diagnosis. Testing of several single HI-related genes is laborious and expensive. In this study, we evaluate the diagnostic utility of whole-exome sequencing (WES) targeting a panel of HI-related genes. Two hundred index patients, mostly of Dutch origin, with presumed hereditary HI underwent WES followed by targeted analysis of an HI gene panel of 120 genes. We found causative variants underlying the HI in 67 of 200 patients (33.5%). Eight of these patients have a large homozygous deletion involving STRC, OTOA or USH2A, which could only be identified by copy number variation detection. Variants of uncertain significance were found in 10 patients (5.0%). In the remaining 123 cases, no potentially causative variants were detected (61.5%). In our patient cohort, causative variants in GJB2, USH2A, MYO15A and STRC, and in MYO6 were the leading causes for autosomal recessive and dominant HI, respectively. Segregation analysis and functional analyses of variants of uncertain significance will probably further increase the diagnostic yield of WES

    CYP21 gene mutation analysis in 198 patients with 21-hydroxylase deficiency in The Netherlands: six novel mutations and a specific cluster of four mutations.

    No full text
    Item does not contain fulltextCongenital adrenal hyperplasia (CAH) due to 21-hydroxylase deficiency is one of the most common autosomal recessive disorders. The aim of this study was to assess the frequencies of CYP21 mutations and to study genotype-phenotype correlation in a large population of Dutch 21-hydroxylase deficient patients. From 198 patients with 21-hydroxylase deficiency, 370 unrelated alleles were studied. Gene deletion/conversion was present in 118 of the 370 alleles (31.9%). The most frequent point mutations were I2G (28.1%) and I172N (12.4%). Clustering of pseudogene-derived mutations in exons 7 and 8 (V281L-F306 + 1nt-Q318X-R356W) on a single allele was found in seven unrelated alleles (1.9%). This cluster had been reported before in two other Dutch patients and in two patients in a study from New York, but not in other series worldwide. Six novel mutations were found: 995-996insA, 1123delC, G291R, S301Y, Y376X, and R483Q. Genotype-phenotype correlation (in 87 well documented patients) showed that 28 of 29 (97%) patients with two null mutations and 23 of 24 (96%) patients with mutation I2G (homozygous or heterozygous with a null mutation) had classic salt wasting. Patients with mutation I172N (homozygous or heterozygous with a null or I2G mutation) had salt wasting (2 of 17, 12%), simple virilizing (10 of 17, 59%), or nonclassic CAH (5 of 17, 29%). All six patients with mutation P30L, V281L, or P453S (homozygous or compound heterozygous) had nonclassic CAH. The frequency of CYP21 mutations and the genotype-phenotype correlation in 21-hydroxylase deficient patients in The Netherlands show in general high concordance with previous reports from other Western European countries. However, a cluster of four pseudogene-derived point mutations on exons 7 and 8 on a single allele, observed in almost 2% of the unrelated alleles, seems to be particular for the Dutch population and six novel CYP21 gene mutations were found

    Identification of entire LMX1B gene deletions in nail patella syndrome: evidence for haploinsufficiency as the main pathogenic mechanism underlying dominant inheritance in man.

    No full text
    Contains fulltext : 69895.pdf (publisher's version ) (Closed access)Heterozygous mutations in the LMX1B gene cause nail patella syndrome (NPS) that is associated with nail and skeletal malformations, nephropathy, and glaucoma. Previous phenotype studies of Lmx1b null mice revealed dorsal limb and renal anomalies similar to human NPS, which contributed to the identification of heterozygous mutations in this LIM-homeodomain protein LMX1B as the genetic defect responsible for NPS. Despite advanced insight into the role of the Lmx1b transcription factor in a broad range of animal developmental programs, the pathogenic mechanism underlying dominant inheritance of NPS in man remained unclear. Here, we describe for the first time the detection of two entire LMX1B gene deletions and one smaller exonic LMX1B deletion by multiplex ligation-dependent probe amplification (MLPA) in a series of eight unrelated families with classical features of NPS in whom no pathogenic LMX1B mutation was found by sequence analysis. The identification of entire LMX1B deletions strongly confirms that haploinsufficiency is the principal pathogenetic mechanism of NPS and suggests a difference in dosage sensitivity for this gene between mice and man

    L1 retrotransposition can occur early in human embryonic development

    No full text
    L1 elements are autonomous retrotransposons that can cause hereditary diseases. We have previously identified a full-length L1 insertion in the CHM (choroideremia) gene of a patient with choroideremia, an X-linked progressive eye disease. Because this L1 element, designated L1CHM, contains two 3′-transductions, we were able to delineate a retrotransposition path in which a precursor L1 on chromosome 10p15 or 18p11 retrotransposed to chromosome 6p21 and subsequently to the CHM gene on chromosome Xq21. A cell culture retrotransposition assay showed that L1CHM is one of the most active L1 elements in the human genome. Most importantly, analysis of genomic DNA from the CHM patient's relatives indicated somatic and germ-line mosaicism for the L1 insertion in his mother. These findings provide evidence that L1 retrotransposition can occur very early in human embryonic development

    The diagnostic yield of whole-exome sequencing targeting a gene panel for hearing impairment in The Netherlands

    No full text
    Hearing impairment (HI) is genetically heterogeneous which hampers genetic counseling and molecular diagnosis. Testing of several single HI-related genes is laborious and expensive. In this study, we evaluate the diagnostic utility of whole-exome sequencing (WES) targeting a panel of HI-related genes. Two hundred index patients, mostly of Dutch origin, with presumed hereditary HI underwent WES followed by targeted analysis of an HI gene panel of 120 genes. We found causative variants underlying the HI in 67 of 200 patients (33.5%). Eight of these patients have a large homozygous deletion involving STRC, OTOA or USH2A, which could only be identified by copy number variation detection. Variants of uncertain significance were found in 10 patients (5.0%). In the remaining 123 cases, no potentially causative variants were detected (61.5%). In our patient cohort, causative variants in GJB2, USH2A, MYO15A and STRC, and in MYO6 were the leading causes for autosomal recessive and dominant HI, respectively. Segregation analysis and functional analyses of variants of uncertain significance will probably further increase the diagnostic yield of WES
    corecore