402 research outputs found

    Social capital and rural innovation process. The evaluation of the measure 124 \u201cCooperation for Development of New Products, Processes and Technologies in the Agriculture, Food and Forestry Sector\u201d in the Umbria Region (Italy)

    Get PDF
    The most recent theories on innovation point out the role of social networks, demonstrating how knowledge is intertwined with network communities and social capital represents an essential factor to comprehend innovation. The social network dimension of the innovation process is also acknowledged in the actual definition of an agricultural innovation system (AIS). This study attempts to assess the role played by social capital in agricultural innovation projects co-financed by the Measure 124 of the Rural Development Program (2007-2013) of the Umbria Region (Italy), based on the analysis of 5 evaluation criteria (relevance, innovation, effectiveness, sustainability, and social capital) in relation to 8 selected projects. The obtained results confirm the validity of the proposed methodology both for the purpose of internal monitoring of the project and for the assessment of the measure on the basis of tangible and intangible factors, such as social capital

    Theory of controlled quantum dynamics

    Get PDF
    We introduce a general formalism, based on the stochastic formulation of quantum mechanics, to obtain localized quasi-classical wave packets as dynamically controlled systems, for arbitrary anharmonic potentials. The control is in general linear, and it amounts to introduce additional quadratic and linear time-dependent terms to the given potential. In this way one can construct for general systems either coherent packets moving with constant dispersion, or dynamically squeezed packets whose spreading remains bounded for all times. In the standard operatorial framework our scheme corresponds to a suitable generalization of the displacement and scaling operators that generate the coherent and squeezed states of the harmonic oscillator.Comment: LaTeX, A4wide, 28 pages, no figures. To appear in J. Phys. A: Math. Gen., April 199

    Continuous variable tangle, monogamy inequality, and entanglement sharing in Gaussian states of continuous variable systems

    Full text link
    For continuous-variable systems, we introduce a measure of entanglement, the continuous variable tangle ({\em contangle}), with the purpose of quantifying the distributed (shared) entanglement in multimode, multipartite Gaussian states. This is achieved by a proper convex roof extension of the squared logarithmic negativity. We prove that the contangle satisfies the Coffman-Kundu-Wootters monogamy inequality in all three--mode Gaussian states, and in all fully symmetric NN--mode Gaussian states, for arbitrary NN. For three--mode pure states we prove that the residual entanglement is a genuine tripartite entanglement monotone under Gaussian local operations and classical communication. We show that pure, symmetric three--mode Gaussian states allow a promiscuous entanglement sharing, having both maximum tripartite residual entanglement and maximum couplewise entanglement between any pair of modes. These states are thus simultaneous continuous-variable analogs of both the GHZ and the WW states of three qubits: in continuous-variable systems monogamy does not prevent promiscuity, and the inequivalence between different classes of maximally entangled states, holding for systems of three or more qubits, is removed.Comment: 13 pages, 1 figure. Replaced with published versio

    Structure of multiphoton quantum optics. II. Bipartite systems, physical processes, and heterodyne squeezed states

    Full text link
    Extending the scheme developed for a single mode of the electromagnetic field in the preceding paper ``Structure of multiphoton quantum optics. I. Canonical formalism and homodyne squeezed states'', we introduce two-mode nonlinear canonical transformations depending on two heterodyne mixing angles. They are defined in terms of hermitian nonlinear functions that realize heterodyne superpositions of conjugate quadratures of bipartite systems. The canonical transformations diagonalize a class of Hamiltonians describing non degenerate and degenerate multiphoton processes. We determine the coherent states associated to the canonical transformations, which generalize the non degenerate two--photon squeezed states. Such heterodyne multiphoton squeezed are defined as the simultaneous eigenstates of the transformed, coupled annihilation operators. They are generated by nonlinear unitary evolutions acting on two-mode squeezed states. They are non Gaussian, highly non classical, entangled states. For a quadratic nonlinearity the heterodyne multiphoton squeezed states define two--mode cubic phase states. The statistical properties of these states can be widely adjusted by tuning the heterodyne mixing angles, the phases of the nonlinear couplings, as well as the strength of the nonlinearity. For quadratic nonlinearity, we study the higher-order contributions to the susceptibility in nonlinear media and we suggest possible experimental realizations of multiphoton conversion processes generating the cubic-phase heterodyne squeezed states.Comment: 16 pages, 23 figure

    Broadband detection of squeezed vacuum: A spectrum of quantum states

    Get PDF
    We demonstrate the simultaneous quantum state reconstruction of the spectral modes of the light field emitted by a continuous wave degenerate optical parametric amplifier. The scheme is based on broadband measurement of the quantum fluctuations of the electric field quadratures and subsequent Fourier decomposition into spectral intervals. Applying the standard reconstruction algorithms to each bandwidth-limited quantum trajectory, a "spectrum" of density matrices and Wigner functions is obtained. The recorded states show a smooth transition from the squeezed vacuum to a vacuum state. In the time domain we evaluated the first order correlation function of the squeezed output field, showing good agreement with the theory.Comment: 11 pages, 5 figure

    DYNAMICAL CONTROL OF THE HALO IN PARTICLE BEAMS: A STOCHASTIC–HYDRODYNAMIC APPROACH

    Get PDF
    In this paper we describe the beam distribution in particle accelerators in the framework of a stochastic–hydrodynamic scheme. In this scheme the possible reproduction of the halo after its elimination is a consequence of the stationarity of the transverse distribution which plays the role of an attractor for every other distribution. The relaxation time toward the halo is estimated, and a few examples of controlled transitions toward a permanent halo elimination are discussed

    Fluctuations of the Condensate in Ideal and Interacting Bose Gases

    Full text link
    We investigate the fluctuations of the condensate in the ideal and weakly interacting Bose gases confined in a box of volume V within canonical ensemble. Canonical ensemble is developed to describe the behavior of the fluctuations when different methods of approximation to the weakly interacting Bose gases are used. Research shows that the fluctuations of the condensate exhibit anomalous behavior for the interacting Bose gas confined in a box.Comment: RevTex, 4 Figs,E-mail:[email protected], corrected typo

    Ground-state properties of trapped Bose-Fermi mixtures: role of exchange-correlation

    Get PDF
    We introduce Density Functional Theory for inhomogeneous Bose-Fermi mixtures, derive the associated Kohn-Sham equations, and determine the exchange-correlation energy in local density approximation. We solve numerically the Kohn-Sham system and determine the boson and fermion density distributions and the ground-state energy of a trapped, dilute mixture beyond mean-field approximation. The importance of the corrections due to exchange--correlation is discussed by comparison with current experiments; in particular, we investigate the effect of of the repulsive potential energy contribution due to exchange--correlation on the stability of the mixture against collapse.Comment: 6 pages, 4 figures (final version as published in Physical Review

    Characterization of separability and entanglement in (2Ă—D)(2\times{D})- and (3Ă—D)(3\times{D})-dimensional systems by single-qubit and single-qutrit unitary transformations

    Full text link
    We investigate the geometric characterization of pure state bipartite entanglement of (2Ă—D)(2\times{D})- and (3Ă—D)(3\times{D})-dimensional composite quantum systems. To this aim, we analyze the relationship between states and their images under the action of particular classes of local unitary operations. We find that invariance of states under the action of single-qubit and single-qutrit transformations is a necessary and sufficient condition for separability. We demonstrate that in the (2Ă—D)(2\times{D})-dimensional case the von Neumann entropy of entanglement is a monotonic function of the minimum squared Euclidean distance between states and their images over the set of single qubit unitary transformations. Moreover, both in the (2Ă—D)(2\times{D})- and in the (3Ă—D)(3\times{D})-dimensional cases the minimum squared Euclidean distance exactly coincides with the linear entropy (and thus as well with the tangle measure of entanglement in the (2Ă—D)(2\times{D})-dimensional case). These results provide a geometric characterization of entanglement measures originally established in informational frameworks. Consequences and applications of the formalism to quantum critical phenomena in spin systems are discussed.Comment: 8 pages, 1 figur
    • …
    corecore