3,373 research outputs found

    Comparison of lightning location data and polarisation radar observations of clouds

    Get PDF
    Simultaneous observations of both the precipitation and the lightning associated with thunderstorms show that the lightning is within 3 km of the maximum precipitation echo. The intensity and type of the precipitation is observed with 500 m spatial accuracy using an S-band polarization radar and the position of the lightning is inferred from a low frequency magnetic direction finding location system. Empirical adjustment to the angles using the redundancy of the lightning data reduce this error. Radar echoes above 45dBZ may be caused by soft hail or hailstones, but similarly intense echoes may result from melting snow. The data show that a new polarization radar parameter, the linear depolarization ratio, can distinguish between soft hail and melting snow, and that the intense radar echoes associated with melting snow pose no threat of lightning. A lightning risk only exists when the radar indicates that the clouds contain soft hail or hailstones

    Near Infrared Observations of a Redshift 4.92 Galaxy: Evidence for Significant Dust Absorption

    Get PDF
    Near-infrared imaging and spectroscopy have been obtained of the gravitationally lensed galaxy at z=4.92 discovered in HST images by Franx et al. (1997). Images at 1.2, 1.6 and 2.2 microns show the same arc morphology as the HST images. The spectrum with resolution \lambda / \Delta\lambda ~ 70 shows no emission lines with equivalent width stronger than 100 A in the rest frame wavelength range 0.34 to 0.40 microns. In particular, [OII]3727 A and [NeIII]3869 A are not seen. The energy distribution is quite blue, as expected for a young stellar population with the observed Ly alpha flux. The spectral energy distribution can be fit satisfactorily for such a young stellar population when absorption by dust is included. The models imply a reddening 0.1 mag < E(B-V) < 0.4 mag. The stellar mass of the lensed galaxy lies in the range of 2 to 16 x 10^9 Msun. This is significantly higher than estimates based on the HST data alone. Our data imply that absorption by dust is important to redshifts of ~5.Comment: LaTeX with ApJ journal format, 2 postscript figures, ApJL, accepte

    Spitzer IRAC confirmation of z_850-dropout galaxies in the Hubble Ultra Deep Field: stellar masses and ages at z~7

    Full text link
    Using Spitzer IRAC mid-infrared imaging from the Great Observatories Origins Deep Survey, we study z_850-dropout sources in the Hubble Ultra Deep Field. After carefully removing contaminating flux from foreground sources, we clearly detect two z_850-dropouts at 3.6 micron and 4.5 micron, while two others are marginally detected. The mid-infrared fluxes strongly support their interpretation as galaxies at z~7, seen when the Universe was only 750 Myr old. The IRAC observations allow us for the first time to constrain the rest-frame optical colors, stellar masses, and ages of the highest redshift galaxies. Fitting stellar population models to the spectral energy distributions, we find photometric redshifts in the range 6.7-7.4, rest-frame colors U-V=0.2-0.4, V-band luminosities L_V=0.6-3 x 10^10 L_sun, stellar masses 1-10 x 10^9 M_sun, stellar ages 50-200 Myr, star formation rates up to ~25 M_sun/yr, and low reddening A_V<0.4. Overall, the z=7 galaxies appear substantially less massive and evolved than Lyman break galaxies or Distant Red Galaxies at z=2-3, but fairly similar to recently identified systems at z=5-6. The stellar mass density inferred from our z=7 sample is rho* = 1.6^{+1.6}_{-0.8} x 10^6 M_sun Mpc^-3 (to 0.3 L*(z=3)), in apparent agreement with recent cosmological hydrodynamic simulations, but we note that incompleteness and sample variance may introduce larger uncertainties. The ages of the two most massive galaxies suggest they formed at z>8, during the era of cosmic reionization, but the star formation rate density derived from their stellar masses and ages is not nearly sufficient to reionize the universe. The simplest explanation for this deficiency is that lower-mass galaxies beyond our detection limit reionized the universe.Comment: 4 pages, 3 figures, emulateapj, Accepted for publication in ApJ Letter

    The Dearth of z~10 Galaxies in all HST Legacy Fields -- The Rapid Evolution of the Galaxy Population in the First 500 Myr

    Get PDF
    We present an analysis of all prime HST legacy fields spanning >800 arcmin^2 for the search of z~10 galaxy candidates and the study of their UV luminosity function (LF). In particular, we present new z~10 candidates selected from the full Hubble Frontier Field (HFF) dataset. Despite the addition of these new fields, we find a low abundance of z~10 candidates with only 9 reliable sources identified in all prime HST datasets that include the HUDF09/12, the HUDF/XDF, all the CANDELS fields, and now the HFF survey. Based on this comprehensive search, we find that the UV luminosity function decreases by one order of magnitude from z~8 to z~10 at all luminosities over a four magnitude range. This also implies a decrease of the cosmic star-formation rate density by an order of magnitude within 170 Myr from z~8 to z~10. We show that this accelerated evolution compared to lower redshift can entirely be explained by the fast build-up of the dark matter halo mass function at z>8. Consequently, the predicted UV LFs from several models of galaxy formation are in good agreement with this observed trend, even though the measured UV LF lies at the low end of model predictions. In particular, the number of only 9 observed candidate galaxies is lower, by ~50%, than predicted by galaxy evolution models. The difference is generally still consistent within the Poisson and cosmic variance uncertainties. However, essentially all models predict larger numbers than observed. We discuss the implications of these results in light of the upcoming James Webb Space Telescope mission, which is poised to find much larger samples of z~10 galaxies as well as their progenitors at less than 400 Myr after the Big Bang.Comment: 13 pages, 6 figures, minor updates to match accepted versio
    • …
    corecore