935 research outputs found

    Radiation arteritis: A contraindication to carotid stenting?

    Get PDF
    BackgroundCarotid artery stenting (CAS) for high-risk anatomic lesions is accepted practice. Neck irradiation and radiotherapy-induced arteritis are common indications. The clinical outcomes of CAS for radiation arteritis have been poorly defined.MethodsA prospective database of patients undergoing CAS at a tertiary referral academic medical center was maintained from 1999 to 2006. Patients undergoing primary carotid artery stenting for significant atherosclerotic (ASOD) and radiotherapy (XRT)-induced occlusive disease were analyzed. Life-table analyses were performed to assess time-dependent outcomes. Cox proportional hazard analysis or Fisher’s exact test was performed to identify factors associated with outcomes. Data are presented as the mean ± SEM unless otherwise indicated.ResultsDuring the study period, 150 patients underwent primary CAS, 75% with embolic protection. Fifty-eight percent were symptomatic. One hundred twenty-seven (85%) were treated for ASOD, and 23 (15%) had XRT. The 30-day all-cause mortality rate was 1% for ASOD and 0% for XRT (P = NS); overall survival at 3 years was equivalent. There was no significant difference in major adverse event rates as defined by the Stenting and Angioplasty with Protection in Patients at High Risk for Endarterectomy (SAPPHIRE) trial between the groups. The 3-year neurologic event-free rate was 85% for ASOD and 87% for XRT (P = NS). Late asymptomatic occlusions were seen only in XRT patients. The 3-year freedom from restenosis rate was significantly worse for the XRT group, at 20%, vs 74% for the ASOD group (P < .05). Likewise, the 3-year patency rate was also worse for the XRT group, at 91%, vs 100% for ASOD by Kaplan-Meier analysis (P < .05). No factor was predictive of occlusion or stenosis by Cox proportional hazards analysis.ConclusionCAS for radiation arteritis has poor long-term anatomic outcome and can present with late asymptomatic occlusions. These findings suggest that these patients require closer postoperative surveillance and raise the question of whether CAS is appropriate for carotid occlusive lesions caused by radiation arteritis

    Gene set of nuclear-encoded mitochondrial regulators is enriched for common inherited variation in obesity

    Get PDF
    There are hints of an altered mitochondrial function in obesity. Nuclear-encoded genes are relevant for mitochondrial function (3 gene sets of known relevant pathways: (1) 16 nuclear regulators of mitochondrial genes, (2) 91 genes for oxidative phosphorylation and (3) 966 nuclear-encoded mitochondrial genes). Gene set enrichment analysis (GSEA) showed no association with type 2 diabetes mellitus in these gene sets. Here we performed a GSEA for the same gene sets for obesity. Genome wide association study (GWAS) data from a case-control approach on 453 extremely obese children and adolescents and 435 lean adult controls were used for GSEA. For independent confirmation, we analyzed 705 obesity GWAS trios (extremely obese child and both biological parents) and a population-based GWAS sample (KORA F4, n = 1,743). A meta-analysis was performed on all three samples. In each sample, the distribution of significance levels between the respective gene set and those of all genes was compared using the leading-edge-fraction-comparison test (cut-offs between the 50(th) and 95(th) percentile of the set of all gene-wise corrected p-values) as implemented in the MAGENTA software. In the case-control sample, significant enrichment of associations with obesity was observed above the 50(th) percentile for the set of the 16 nuclear regulators of mitochondrial genes (p(GSEA,50) = 0.0103). This finding was not confirmed in the trios (p(GSEA,50) = 0.5991), but in KORA (p(GSEA,50) = 0.0398). The meta-analysis again indicated a trend for enrichment (p(MAGENTA,50) = 0.1052, p(MAGENTA,75) = 0.0251). The GSEA revealed that weak association signals for obesity might be enriched in the gene set of 16 nuclear regulators of mitochondrial genes

    Multi-locus Test Conditional on Confirmed Effects Leads to Increased Power in Genome-wide Association Studies

    Get PDF
    Complex diseases or phenotypes may involve multiple genetic variants and interactions between genetic, environmental and other factors. Current genome-wide association studies (GWAS) mostly used single-locus analysis and had identified genetic effects with multiple confirmations. Such confirmed single-nucleotide polymorphism (SNP) effects were likely to be true genetic effects and ignoring this information in testing new effects of the same phenotype results in decreased statistical power due to increased residual variance that has a component of the omitted effects. In this study, a multi-locus association test (MLT) was proposed for GWAS analysis conditional on SNPs with confirmed effects to improve statistical power. Analytical formulae for statistical power were derived and were verified by simulation for MLT accounting for confirmed SNPs and for single-locus test (SLT) without accounting for confirmed SNPs. Statistical power of the two methods was compared by case studies with simulated and the Framingham Heart Study (FHS) GWAS data. Results showed that the MLT method had increased statistical power over SLT. In the GWAS case study on four cholesterol phenotypes and serum metabolites, the MLT method improved statistical power by 5% to 38% depending on the number and effect sizes of the conditional SNPs. For the analysis of HDL cholesterol (HDL-C) and total cholesterol (TC) of the FHS data, the MLT method conditional on confirmed SNPs from GWAS catalog and NCBI had considerably more significant results than SLT

    Genome-wide association scan meta-analysis identifies three Loci influencing adiposity and fat distribution.

    Get PDF
    To identify genetic loci influencing central obesity and fat distribution, we performed a meta-analysis of 16 genome-wide association studies (GWAS, N = 38,580) informative for adult waist circumference (WC) and waist-hip ratio (WHR). We selected 26 SNPs for follow-up, for which the evidence of association with measures of central adiposity (WC and/or WHR) was strong and disproportionate to that for overall adiposity or height. Follow-up studies in a maximum of 70,689 individuals identified two loci strongly associated with measures of central adiposity; these map near TFAP2B (WC, P = 1.9x10(-11)) and MSRA (WC, P = 8.9x10(-9)). A third locus, near LYPLAL1, was associated with WHR in women only (P = 2.6x10(-8)). The variants near TFAP2B appear to influence central adiposity through an effect on overall obesity/fat-mass, whereas LYPLAL1 displays a strong female-only association with fat distribution. By focusing on anthropometric measures of central obesity and fat distribution, we have identified three loci implicated in the regulation of human adiposity

    Haplotype Reconstruction Error as a Classical Misclassification Problem: Introducing Sensitivity and Specificity as Error Measures

    Get PDF
    BACKGROUND: Statistically reconstructing haplotypes from single nucleotide polymorphism (SNP) genotypes, can lead to falsely classified haplotypes. This can be an issue when interpreting haplotype association results or when selecting subjects with certain haplotypes for subsequent functional studies. It was our aim to quantify haplotype reconstruction error and to provide tools for it. METHODS AND RESULTS: By numerous simulation scenarios, we systematically investigated several error measures, including discrepancy, error rate, and R(2), and introduced the sensitivity and specificity to this context. We exemplified several measures in the KORA study, a large population-based study from Southern Germany. We find that the specificity is slightly reduced only for common haplotypes, while the sensitivity was decreased for some, but not all rare haplotypes. The overall error rate was generally increasing with increasing number of loci, increasing minor allele frequency of SNPs, decreasing correlation between the alleles and increasing ambiguity. CONCLUSIONS: We conclude that, with the analytical approach presented here, haplotype-specific error measures can be computed to gain insight into the haplotype uncertainty. This method provides the information, if a specific risk haplotype can be expected to be reconstructed with rather no or high misclassification and thus on the magnitude of expected bias in association estimates. We also illustrate that sensitivity and specificity separate two dimensions of the haplotype reconstruction error, which completely describe the misclassification matrix and thus provide the prerequisite for methods accounting for misclassification

    Identification of novel Angiogenin (ANG) gene missense variants in German patients with amyotrophic lateral sclerosis

    Get PDF
    Amyotrophic lateral sclerosis (ALS) is a fatal progressive neurodegenerative disease characterized by the selective death of motor neurons in the motor cortex, brain stem and spinal cord. Recently, missense variants in the angiogenin gene (ANG), an angiogenic factor expressed in ventral horn motor neurons that is up-regulated by hypoxia, have been found in ALS patients of Irish/Scottish, North American, Italian, French and Dutch descent. To investigate the role of ANG in the German population, we screened for mutations by sequencing the entire coding region of the ANG gene in a large sample of 581 German ALS cases and 616 sex- and age-matched healthy controls. We identified two heterozygous missense variants, F(−13)L and K54E, in two German sporadic ALS cases but not in controls. Both missense variants are novel and have not been previously found in ALS cases. Our results suggest that missense variants in the ANG gene play a role in ALS in the German population and provide further evidence to support the hypothesis that angiogenic factors up-regulated by hypoxia are involved in the pathophysiology of ALS
    corecore