382 research outputs found

    Neuroethics and fMRI: Mapping a Fledgling Relationship

    Get PDF
    Human functional magnetic resonance imaging (fMRI) informs the understanding of the neural basis of mental function and is a key domain of ethical enquiry. It raises questions about the practice and implications of research, and reflexively informs ethics through the empirical investigation of moral judgments. It is at the centre of debate surrounding the importance of neuroscience findings for concepts such as personhood and free will, and the extent of their practical consequences. Here, we map the landscape of fMRI and neuroethics, using citation analysis to uncover salient topics. We find that this landscape is sparsely populated: despite previous calls for debate, there are few articles that discuss both fMRI and ethical, legal, or social implications (ELSI), and even fewer direct citations between the two literatures. Recognizing that practical barriers exist to integrating ELSI discussion into the research literature, we argue nonetheless that the ethical challenges of fMRI, and controversy over its conceptual and practical implications, make this essential

    Update of P2X receptor properties and their pharmacology: IUPHAR Review 30

    Get PDF
    The known seven mammalian receptor subunits (P2X1–7) form cationic channels gated by ATP. Three subunits compose a receptor channel. Each subunit is a polypeptide consisting of two transmembrane regions (TM1 and TM2), intracellular N- and C-termini, and a bulky extracellular loop. Crystallization allowed the identification of the 3D structure and gating cycle of P2X receptors. The agonist-binding pocket is located at the intersection of two neighbouring subunits. In addition to the mammalian P2X receptors, their primitive ligand-gated counterparts with little structural similarity have also been cloned. Selective agonists for P2X receptor subtypes are not available, but medicinal chemistry supplied a range of subtype-selective antagonists, as well as positive and negative allosteric modulators. Knockout mice and selective antagonists helped to identify pathological functions due to defective P2X receptors, such as male infertility (P2X1), hearing loss (P2X2), pain/cough (P2X3), neuropathic pain (P2X4), inflammatory bone loss (P2X5), and faulty immune reactions (P2X7)

    Optical properties of the pseudogap state in underdoped cuprates

    Full text link
    Recent optical measurements of deeply underdoped cuprates have revealed that a coherent Drude response persists well below the end of the superconducting dome. In addition, no large increase in optical effective mass has been observed, even at dopings as low as 1%. We show that this behavior is consistent with the resonating valence bond spin-liquid model proposed by Yang, Rice, and Zhang. In this model, the overall reduction in optical conductivity in the approach to the Mott insulating state is caused not by an increase in effective mass, but by a Gutzwiller factor, which describes decreased coherence due to correlations, and by a shrinking of the Fermi surface, which decreases the number of available charge carriers. We also show that in this model, the pseudogap does not modify the low-temperature, low-frequency behavior, though the magnitude of the conductivity is greatly reduced by the Gutzwiller factor. Similarly, the profile of the temperature dependence of the microwave conductivity is largely unchanged in shape, but the Gutzwiller factor is essential in understanding the observed difference in magnitude between ortho-I and -II YBa2_2Cu3_3Oy_y.Comment: 9 pages, 6 figures, submitted to Eur. Phys. J.

    Axial plane dissimilarities of two identical Lenke-type 6C scoliosis cases visualized and analyzed by vertebral vectors

    Get PDF
    Purpose The global appearance of scoliosis in the horizontal plane is not really known. Therefore, the aims of this study were to analyze scoliosis in the horizontal plane using vertebral vectors in two patients classified with the same Lenke group, and to highlight the importance of the information obtained from these vertebral vector-based top-view images in clinical practice. Methods Two identical cases of scoliosis were selected, based on preoperative full-body standing anteroposterior and lateral radiographs obtained by the EOSℱ 2D/3D system. Three-dimensional (3D) surface reconstructions of the spinal curves were performed by using sterEOSℱ 3D software before and after surgery. In both patients, we also determined the vertebral vectors and horizontal plane coordinates for analyzing the curves mathematically before and after surgery. Results Despite the identical appearance of spinal curves in the frontal and sagittal planes, the horizontal views seemed to be significantly different. The vertebral vectors in the horizontal plane provided different types of parameters regarding scoliosis and the impact of surgical treatment: reducing lateral deviations, achieving harmony of the curves in the sagittal plane, and reducing rotations in the horizontal plane. Conclusions Vertebral vectors allow the evolution of scoliosis curve projections in the horizontal plane before and after surgical treatment, along with representation of the entire spine. The top view in the horizontal plane is essential to completely evaluate the scoliosis curves, because, despite the similar representations in the frontal and sagittal planes, the occurrence of scoliosis in the horizontal plane can be completely different.There is no funding source

    The horizontal plane appearances of scoliosis: what information can be obtained from top-view images?

    Get PDF
    PURPOSE: A posterior-anterior vertebral vector is proposed to facilitate visualization and understanding of scoliosis. The aim of this study was to highlight the interest of using vertebral vectors, especially in the horizontal plane, in clinical practice. METHODS: We used an EOS two-/three-dimensional (2D/3D) system and its sterEOS 3D software for 3D reconstruction of 139 normal and 814 scoliotic spines-of which 95 cases were analyzed pre-operatively and post-operatively, as well. Vertebral vectors were generated for each case. Vertebral vectors have starting points in the middle of the interpedicular segment, while they are parallel to the upper plate, ending in the middle of the segment joining the anterior end plates points, thus defining the posterior-anterior axis of vertebrae. To illustrate what information could be obtained from vertebral vector-based top-view images, representative cases of a normal spine and a thoracic scoliosis are presented. RESULTS: For a normal spine, vector projections in the transverse plane are aligned with the posterior-anterior anatomical axis. For a scoliotic spine, vector projections in the horizontal plane provide information on the lateral decompensation of the spine and the lateral displacement of vertebrae. In the horizontal plane view, vertebral rotation and projections of the sagittal curves can also be analyzed simultaneously. CONCLUSIONS: The use of posterior-anterior vertebral vector facilitates the understanding of the 3D nature of scoliosis. The approach used is simple. These results are sufficient for a first visual analysis furnishing significant clinical information in all three anatomical planes. This visualization represents a reasonable compromise between mathematical purity and practical use

    Electronic structure in underdoped cuprates due to the emergence of a pseudogap

    Full text link
    The phenomenological Green's function developed in the works of Yang, Rice and Zhang has been very successful in understanding many of the anomalous superconducting properties of the deeply underdoped cuprates. It is based on considerations of the resonating valence bond spin liquid approximation and is designed to describe the underdoped regime of the cuprates. Here we emphasize the region of doping, xx, just below the quantum critical point at which the pseudogap develops. In addition to Luttinger hole pockets centered around the nodal direction, there are electron pockets near the antinodes which are connected to the hole pockets by gapped bridging contours. We determine the contours of nearest approach as would be measured in angular resolved photoemission experiments and emphasize signatures of the Fermi surface reconstruction from the large Fermi contour of Fermi liquid theory (which contains 1+x1+x hole states) to the Luttinger pocket (which contains xx hole states). We find that the quasiparticle effective mass renormalization increases strongly towards the edge of the Luttinger pockets beyond which it diverges.Comment: 11 pages, 9 figure
    • 

    corecore