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Abstract 

 

The known seven mammalian receptor (R) subunits (P2X1-7) form cationic channels 

gated by ATP. Three subunits compose a receptor-channel. Each subunit is a 

polypeptide consisting of two transmembrane regions (TM1, TM2), intracellular N- 

and C-termini, and a bulky extracellular loop. Crystallization allowed the identification 

of the 3D-structure and gating cycle of P2XRs. The agonist binding pocket is located 

at the intersection of two neighboring subunits. In addition to the mammalian P2XRs 

their primitive ligand-gated counterparts with little structural similarity have also been 

cloned. Selective agonists for P2XR subtypes are not available, but medicinal 

chemistry supplied a range of subtype selective antagonists, as well as positive and 

negative allosteric modulators. Knockout mice and selective antagonists helped to 

identify pathological functions due to defective P2XRs, such as male infertility 

(P2X1), hearing loss (P2X2), pain/cough (P2X3), neuropathic pain (P2X4), 

inflammatory bone loss (P2X5), and faulty immune reactions (P2X7). 
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1.  INTRODUCTION 

 

ATP, originally assumed to be exclusively the universal energy currency of cells, was 

proposed by Geoffrey Burnstock (1972) in his classic review to be an extracellular, 

non-adrenergic, non-cholinergic (NANC) neurotransmitter in smooth muscle organs 

of the gastrointestinal tract (see Verkhratsky et al., 2020 for a fuller description of the 

evidence). After the acceptance of “NANC neurotransmission”, and the broadening 

of this hypothesis to the “co-transmission” idea (co-storage and co-release of ATP 

with acetylcholine or noradrenaline), purine and pyrimidine nucleotides were then 

recognized to be extracellular signalling molecules that co-ordinate the function of 

almost every cell in the animal/human organism (Burnstock & Knight, 2004). 

Receptors that are stimulated by these nucleotides have been classified into two 

types (Burnstock & Kennedy, 1985), the ligand-gated cationic channels termed P2X 

receptors (P2XRs) (seven mammalian subtypes: P2X1-7; Khakh et al., 2001), and 

the G protein-coupled P2Y receptors (P2YRs) (eight mammalian subtypes: 

P2Y1,2,4,6,11-14; Abbracchio et al., 2006).  

   For P2YRs an excellent new IUPHAR review is available, describing in detail the 

pharmacological data available on this class of receptors (Jacobson et al., 2019). 

However, our knowledge on P2XR nomenclature and subunit properties was last 

summarized in an official IUPHAR review in 2001 (Khakh et al., 2001), with an 

interim, and non-official up-dating in 2009 (Jarvis & Khakh, 2009). Hence, the aim of 

this review is to present a critical update of the pharmacological properties as well as 

physiological and pathophysiological functions of P2XRs. 

 

2.  MEDICINAL CHEMISTRY OF P2X RECEPTOR LIGANDS 

 

The mammalian P2XRs form homo- or heterotrimeric channels, each of which 

harbors three ATP binding sites. Table 1 summarizes the molecular and general 

pharmacological properties (agonist and antagonist potencies) of the seven P2XR 

subtypes. For this purpose, we have updated a most helpful Table from a review by 

Jarvis & Khakh (2009) by including more recently discovered receptor ligands, and 

introducing some recent developments (i.e. generation of knockout animal models). 

 

https://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=52
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P2XR agonists. Despite high conservation of the ATP binding site in each P2XR 

subtype, there are marked differences in the potency of ATP (1) (Table 1). It is active 

in the low micromolar to submicromolar range at all subtypes, except for the P2X7R, 

which requires ATP concentrations in the hundreds of micromolar range for 

activation. P2XR agonists structurally derived from ATP have been described (see 

Figure 1), but agonists with high selectivity for a single subtype are presently not 

available (Lambertucci et al., 2015; Jacobson & Müller, 2016). 2-Methylthio-ATP (2) 

and ATPγS (3) display a similar profile as ATP, but both compounds are 

metabolically more stable. α,β-Methylene-ATP (4) shows a preference for P2X1Rs 

and P2X3Rs with somewhat lower P2X4R potency and much lower P2X7R potency, 

while β,γ-methylene-ATP (5) is most potent at P2X1Rs and has only negligible 

potency at the other subtypes. 2’(3’)-O-(4-benzoylbenzoyl)ATP (BzATP, 6) is 

sometimes described as a selective agonist for P2X7Rs, but in fact it has the highest 

potency at P2X1Rs followed by P2X3Rs (for data see Table 1). Nonetheless, 

because it is approximately ten times more potent than ATP, it is frequently used for 

activation of P2X7Rs to avoid high, cytotoxic concentrations of ATP. 2’,3’-

Substitution with bulky residues, as in TNP-ATP (7) and the P2X3R antagonists 8 

and 9 (DT-0111), or dinucleotide formation, as in diinosine pentaphosphate (Ip5I, 10), 

can abolish agonistic activity leading to P2XR antagonists. 

 

Allosteric modulation of P2XRs by physiological ions, lipids, steroids and ethanol. 

P2XR function can be allosterically modulated by ions (e.g., Mg2+, Ca2+, Zn2+; Table 

1), steroids, bile acids and lipids, e.g., phosphatidylinositol polyphosphates such as 

PI(4,5)P2 (Bernier et al., 2008). The PIPs bind to positively charged amino acids in 

the cytosolic C-terminal domain and inhibit P2X4R-mediated currents. The P2X4R, 

and to some extent the P2X2R, are inhibited by high ethanol concentrations (~100 

mM) (Müller, 2015, Sivcev et al., 2019 Ilyaskin et al., 2019). 

 

Positive allosteric modulators of P2XRs. Ivermectin (11, Figure 1), a CNS penetrant 

macrocyclic lactone used in veterinary medicine as an antiparasitic agent, interacts 

with various ion channels (Zemkova et al., 2014, Müller, 2015) and acts as a positive 

allosteric modulator (PAM) at P2X4Rs, facilitating the opening and retarding closing 

of the channel in the 100 nM - 3 µM range (Khakh et al., 1999; Priel and Silberberg, 

2004). At a similar concentration (3 µM), ivermectin is also active at the human (h), 

https://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4324
https://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2373
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but not rat (r) and mouse (m) P2X7Rs (Nörenberg et al., 2012). Structural 

modification of several antagonists has produced derivatives with positive 

modulatory activity. MRS2219 (12) selectively potentiates ATP-induced responses at 

recombinant rP2X1Rs expressed in Xenopus laevis oocytes, with an EC50 of 5.9 µM 

(Jacobson et al., 1998). Among a series of P2X2R antagonists with an 

anthraquinone core structure, several derivatives showed positive allosteric 

modulation. PSB-10129 (13) was one of the most potent P2X2R-PAMs (EC50 = 489 

nM), causing a 3-fold increase in the maximal ATP-elicited current (Baqi et al., 

2011). The anthraquinone derivative Cibacron Blue (14a), which is one of the 

isomers present in Reactive Blue 2 (14b), is a PAM of hP2X3Rs and rP2X4Rs (Baqi 

et al., 2011). It is non-selective and may also interact with other P2XR subtypes. 

Recently, ginsenosides, e.g. 15, structurally related to steroids and representing the 

main constituents of the medicinal plant, ginseng (Panax ginseng), were found to act 

as P2X4R PAMs (Dhuna et al., 2018). The development of PAMs may be a 

promising approach for drug development, since selectivity for orthosteric agonists 

will be difficult to achieve. 

 

Non-selective P2X receptor antagonists. Moderately potent, non-selective P2XR 

antagonists include suramin, Reactive Blue 2 (14b, Figure 2), PPADS, and iso-

PPADS. They are of limited use and should be replaced by more potent and 

selective antagonists that are now available. The ATP derivative trinitrophenyl 

(TNP)-ATP, (7) is very potent at P2X1Rs and P2X3Rs (low nanomolar IC50 values), 

much less potent at P2X2Rs and P2X4Rs, and virtually inactive at P2X7Rs (Dal Ben 

et al., 2018). Ip5I (10) is most potent as a P2X1R antagonist and also blocks the 

P2X3R, but not the heteromeric P2X2/3R, while it potentiates the P2X4R 

(Lambertucci et al., 2015). Recently, aurintricarboxylic acid, a potent inhibitor of 

nucleases, was reported to strongly block P2X1Rs and P2X3Rs in a non-competitive 

manner (Obrecht et al. 2019). 

 

P2X1 receptor antagonists. Only a few P2X1R-selective antagonists have been 

developed (Figure 2). Salicylamide derivatives with high potency and selectivity were 

recently described (Tian et al., 2020), representing small, uncharged molecules, 

which act as negative allosteric modulators (NAMs). Some of them, e.g. PSB-2014 

(16b), only partially inhibited the human P2X1R. Suramin derivatives, e.g. NF279 

https://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=6496
https://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1739
https://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1725
https://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=11230
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(17) and NF023 (18), appear to be competitive antagonists. MRS2159 (19), derived 

from PPADS, binds covalently to the orthosteric binding site of the receptor (Erhard 

et al., 2003), but may also block P2X7Rs (Donnelly-Roberts et al., 2009).  

 

P2X2 receptor antagonists. Only a few selective P2X2R antagonists have been 

developed (Figure 2). The anionic standard P2R antagonists PPADS, Reactive Blue 

2 (14b), TNP-ATP (7), and suramin are moderately potent, non-selective P2X2R 

antagonists. The suramin derivative, NF770 (20), is more potent and selective for 

P2X2Rs than to the other P2XRs, and evidence was presented for a competitive 

mechanism of action (Wolf et al., 2011). Potent and selective P2X2R antagonists 

related to Reactive Blue 2 have been developed, such as PSB-10211 (21) and PSB-

1011 (22) (Baqi et al., 2011).  

 

P2X3 receptor antagonists. Many potent, selective P2X3R antagonists have been 

developed (Marucci et al., 2019; Ford, 2012; Müller, 2010) (Figure 2). One of the first 

was A-317491 (23), a tricarboxylate, which binds to the ATP binding site, acting as a 

competitive antagonist (Jarvis et al., 2002). It displays low peroral and CNS 

bioavailability and high plasma-protein binding. 2’,3’-Benzylidene-ATP (8) and 

related ATP derivatives have submicromolar potency and some P2X3R selectivity 

(Dal Ben et al., 2019). The 3’-benzamido-ATP derivative, DT-0111 (9), was 

developed as a water-soluble P2X2/3R antagonist suitable for administration by 

inhalation (Pelleg et al., 2019). It has an IC50 value of 0.3 µM, as well as high 

selectivity, and represents a drug candidate for chronic obstructive pulmonary 

disease, chronic cough and overactive urinary bladder (Pelleg et al., 2019). 

   A series of allosteric antagonists were discovered in a high-throughput screening 

campaign centered on the drug trimethoprim, (for reviews see Müller, 2010; Müller, 

2015). Gefapixant (24), named after Geoffrey Burnstock (“Gef” sounds the same as 

“Geoff”), has been advanced to clinical trials for chronic cough (Morice et al., 2019). 

Further potent and selective derivatives of this series include AF-353 (25) and AF-

906 (26). AF-353 displays IC50 values of 6 nM (hP2X3R), 13 nM (rP2X3R) and 25 

nM (hP2X2/3R), and is selective versus P2X1, P2X2, P2X5, and P2X7Rs (IC50 > 10 

µM) as well as a range of other targets. It shows peroral bioavailability and is brain 

penetrant. AF-906 displayed superior pharmacokinetic properties and IC50 values of 

2 nM (hP2X3R) and 5 nM (hP2X2/3R). The imidazopyridine derivative BLU-5937 

https://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4266
https://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=11231
https://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1728
https://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=9545
https://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4115
https://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=9540
https://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=9538
https://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=9538
https://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=11232
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(27) was reported to be selective for the homomeric P2X3R versus the heteromeric 

P2X2/3R and therefore, in contrast to Gefapixant, is expected not to affect taste 

sensing. The compound is being evaluated clinically for chronic cough and pruritus 

(Garceau & Chauret, 2019). 

 

P2X4 receptor antagonists. The benzodiazepine derivative 5-BDBD (28, Figure 2) is 

a moderately potent (IC50 = 0.5 µM), selective allosteric P2X4R antagonist 

(Abdelrahman et al., 2016). It displays low water-solubility and is therefore not easily 

handled. NP-1815-PX (29) is a related compound with increased water-solubility 

(Matsumara et al., 2016). A possibly related compound, NC-2600 (structure not 

disclosed), entered clinical trials for neuropathic pain, but after a phase I study, no 

further development has been reported. The allosteric P2X4R antagonist, 

N-(benzyloxycarbonyl)phenoxazine (PSB-12054, 30), exhibited an IC50 of 0.2 μM at 

the hP2X4R, but was less potent at rP2X4Rs (2.1 µM) and mP2X4Rs (1.8 µM) 

(Hernandez-Olmos et al., 2012). A drawback is its high lipophilicity and moderate 

water-solubility. A more water-soluble analogue is PSB-12062 (31), the N-(p-

methylphenylsulfonyl)-substituted phenoxazine. It was similarly potent at hP2X4Rs 

(IC50 = 1.4 µM), rP2X4Rs (0.9 µM) and mP2X4Rs (1.8 µM) and showed selectivity 

versus P2X1Rs, P2X3Rs and P2X7Rs (Hernandez-Olmos et al., 2012). The urea 

derivative BX430 (32) was identified by compound library screening as an allosteric 

antagonist with an IC50 value of 0.5 µM at the hP2X4R. It showed selectivity versus 

other P2XR subtypes, but had no effect on mP2X4Rs and rP2X4Rs (Ase et al., 

2015). The sulfonamide BAY-1797 (33) was recently presented as a compound with 

an IC50 of 210 nM at the hP2X4R and high selectivity (Werner et al., 2020). This 

antagonist shows high water-solubility and no brain penetration. The potent and 

selective P2X4R antagonist PSB-15417 (structure undisclosed), a brain-penetrant 

compound, showed high activity in animal models of neuropathic pain (Teixeira et 

al., 2018). 

 

P2X7 receptor antagonists The P2X7R has been the most extensively investigated 

subtype for drug development, and numerous potent and selective, mainly allosteric, 

antagonists have been reported (Gelin et al., 2020). The sulfonate dye Brilliant Blue 

G blocks P2X7Rs and has been used in a number of studies due to its low cost. 

However, improved P2X7R antagonists with suitable pharmacokinetic properties are 

https://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=9541
https://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=11233
https://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=9543
https://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4147
https://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4147
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available (Rech et al., 2016, Gelin et al., 2020) and should be used instead. As for 

many allosteric modulators, species differences have been observed for some 

P2X7R antagonists. The very first clinical studies were performed with allosteric 

P2X7R antagonists (e.g. AZD9056, 40) for rheumatoid arthritis treatment, but their 

effectiveness for this indication was not convincing. Useful P2X7R antagonists (34-

45, Figure 2) belong to a range of chemical compound classes. Some, e.g. 43, show 

high brain-permeability. JNJ-54175446 (43) has been clinically evaluated for the 

treatment of major depression and bipolar disorders. 11C and 18F tracers (44, 45) for 

positron emission tomography (PET) have been developed.  

 

3.  GENERAL STRUCTURE OF P2X RECEPTORS 

 

To date, 27 high-resolution P2XR structures have been solved, all within the last 

decade and all obtained from truncated subunits, except for rP2X7, for which the full-

length structure has been solved. Supported by structural data obtained from 

vertebrate and invertebrate receptors, there is now strong evidence that P2XRs 

share similar tertiary and quaternary architecture, further confirming the hypothesis 

that all P2XRs belong to the same structural and evolutionary group (Figure 3a-d).  

   Structures revealed a chalice-like, trimeric assembly of three subunit monomers, 

with the extracellular domain protruding 70 Å above the plasma membrane plane, 

and the transmembrane (TM) domain, which is comprised of six TM α-helices (two 

from each subunit) forming the ionic pore, extending approximately 28 Å into the 

membrane. The intracellular domain protrudes less than the extracellular domain, 

and contains the “cytoplasmic cap”, a highly intertwined region, rich in β-sheets, 

which is formed by domain-swapping of the N- and C-termini of all three subunits. 

The intracellular region of the rP2X7R contains two additional domains: the cysteine-

rich C-cys anchor and the cytoplasmic ballast, both located at the C-terminal end 

(McCarthy et al., 2019) (Figure 3c).  

 

Agonist sites. Three ATP-binding sites are found in the extracellular domain within 

large, interfacial pockets located ~40 Å from the TM domain. ATP-bound structures 

reveal that the phosphates of ATP bind to several highly conserved, positively 

charged (e.g. Lys70, Lys72, Arg298 and Lys316 in zfP2X4R) and polar (Asn296) 

residues (Figure 3e-g). Structures further showed that ATP unexpectedly adopts an 

https://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=7826
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unusual U-shaped conformation, allowing the adenine base of ATP to be deeply 

buried in the binding pocket and recognized by polar (Lys70 and Thr189) and 

hydrophobic interactions (Leu191 and Ile232). The ribose ring of ATP is recognized 

by non-polar residues (Leu217), while the O1 and O2 atoms of the ring are rather 

solvent-accessible. Structures of other bound agonists, such as 2-methylthio-ATP 

(Mansoor et al., 2016), and CTP (Kasuya et al., 2017a), reveal similar binding modes 

and orientations, although subtle differences exist, in particular in the base 

recognition. Interestingly, the entrance to the binding pocket of the P2X7R (<11Å 

orifice) (McCarthy et al., 2019) is much narrower than that of other P2XRs, for 

example the P2X3R (17 Å orifice) (Mansoor et al., 2016). This may reduce drug 

accessibility to the binding pocket and so contribute to the three orders of magnitude 

lower potency of ATP at the P2X7R compared to other P2X subtypes. Nonetheless, 

these structural data strongly suggest that the molecular rules governing agonist 

recognition are highly conserved across P2XRs and species. 

 

Antagonist sites. Molecular rules governing competitive antagonist binding seem less 

stringent than those of agonists. Structures of bound competitive antagonists, such 

as TNP-ATP or A-317491, reveal significant differences in both binding modes and 

orientations, when compared to agonist-bound structures. Although TNP-ATP and A-

317491 occupy the orthosteric site, they bind more deeply in the binding cleft than 

ATP, adopting either a Y-shape (Mansoor et al., 2016) or an extended conformation 

(Kasuya et al., 2017b). Compared to the high structural constrains imposed by 

agonist binding, conformational flexibility of bound competitive antagonists may 

explain why they do not produce channel opening.  

 

Allosteric sites. Structures with several bound non-competitive inhibitors also reveal 

molecular details of allosteric antagonism in P2XRs (Coddou et al., 2011; 

Habermacher et al., 2016), and at least two have been resolved at the level of 

atomic detail: One is located near the apex of the panda P2X7R (Karasawa and 

Kawate, 2016) and the other one just beneath the orthosteric binding site in the 

hP2X3R (Wang et al., 2018). Occupancy of these allosteric sites is thought to 

prevent mechanical motions involved in channel gating. Other allosteric sites are 

also present in P2XRs, including sites in the TM that are regulated by phospholipids 
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(Karasawa et al., 2017), but their definitive locations have not yet been confirmed by 

high-resolution structural studies. 

 

Gating cycle. Of the 27 high-resolution structures, six have been solved in an 

apparent open channel conformation, bound to ATP, and three in a desensitized, 

closed channel state, bound to either ATP or 2-methylthio-ATP. Based on these 

structures, gating cycle models have been proposed for desensitizing (Mansoor et 

al., 2016) and non-desensitizing channels (McCarthy et al., 2019). Although these 

structures were all solved in detergents (i.e. in non-native phospholipid bilayer), they 

provide important clues on channel gating and desensitization mechanisms. 

Supported by experimental data (see references cited in (Habermacher et al., 

2016)), it is thought that ATP binding induces a series of structural changes, from 

tightening of the binding pocket to the outward expansion of the six TM α-helices, 

leading to channel opening. 

    Interestingly, the helical pitch of the three innermost TM2 helices changes from an 

α- to a 310-helix during channel opening. Owing to the presence of the cytoplasmic 

cap, this helical stretching is energetically compensated (Mansoor et al., 2016), 

which results in the stabilization of the open channel state. However, it appears that 

during desensitization, TM2 helices recoil as the cytoplasmic cap dissembles. 

Therefore, the structural stability of the cytoplasmic cap appears to tune the rate and 

extent of desensitization, whereby fast-desensitizing P2X receptors have a less 

stable cap, compared to slowly or non-desensitizing receptors, such as P2X7Rs, 

which possess a more stable cap (McCarthy et al., 2019). 

 

4.  P2X RECEPTOR MOUSE MODELS 

 

The major phenotypes of P2XR knockout mice are summarized below. For detailed 

information and references see Figure 4, Kaczmarek-Hajek et al. (2012), Nicke et al. 

(2019), http://www.informatics.jax.org/, and http://www.findmice.org/. Changes 

caused by the deletion of individual P2XRs will be discussed in detail in the specific 

P2XR sections. 

   Consistent with P2X1R expression, P2rx1tm1Chn mice show a smooth muscle (90% 

reduced male fertility, slight hypertension) and a prothrombotic phenotype. Despite 

abundant P2X2R expression in neuronal and non-neuronal tissues, P2rx2tm1Ckn mice 
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present a mild phenotype, with impaired neurotransmission, e.g. in pelvic afferent 

nerves, carotid sinus nerve and sensory ganglia. A role for cochlear P2X2R in noise 

adaption and hearing loss was found in P2rx2tm1Ckn mice and in humans carrying a 

P2X2R mutation. P2rx3tm1Ckn and P2rx3tm1Jwo are less sensitive to inflammatory pain, 

but not acute noxious thermal (hot plate) and mechanical stimuli. However, using 

different assays, thermal hyperresponsiveness was observed and compensatory 

effects were suggested. Like P2rx2tm1Ckn mice, P2rx3-/- mice showed bladder 

hyporeflexia and impaired peristalsis and additionally altered hippocampal synaptic 

plasticity. P2rx2/P2rx3Dbl-/- mice have gustatory deficits and show developmental 

abnormalities and high lethality due to pneumonia, probably resulting from reduced 

ventilatory responses to hypoxia. Surviving mice appear normal. P2rx4tm1Rass and 

P2rx4tm1Ando mice confirmed the involvement of spinal microglial P2X4Rs in chronic 

inflammatory and neuropathic pain. Investigation of P2rx4tm1Ando mice also revealed 

a role of endothelial P2X4Rs in vascular functions, resulting in high blood pressure. 

In P2rx4tm1Rass mice altered hippocampal synaptic plasticity and perceptual and 

socio-communicative deficits were described. A mouse model in which P2X4R-

mCherry expression in the plasma membrane can be conditionally increased 

(P2rx4mCherryIN) revealed anxiolytic effects and learning deficits. Transgenic 

hP2X4R-overexpressing mice exhibit increased myocyte contractility, while cardiac-

specific P2X4R knockout mice (P2rx4tm1.1Ngc) show more severe heart failure. 

P2rx4tm1Dgen showed abnormal macrophage function. P2X5Rs are widely distributed 

in murine tissues; osteoclasts from P2rx5-/- mice were shown to have deficits in 

inflammasome activation and osteoclast maturation under inflammatory conditions 

(Kim et al., 2017). P2rx5tm1Lex mice showed altered immune cell numbers and 

learning/exploratory behaviour. P2rx6tm1Dgen mice showed a pain phenotype.  

   At least seven P2rx7-/- mouse lines have been generated and show deficits in 

immune function, cytokine release and reduced inflammatory and neuropathic pain. 

P2rx7 deletion is beneficial in numerous pathophysiological and inflammatory 

conditions. Furthermore, alterations in bone formation (P2rx7tm1Gab) and an 

antidepressant-like profile (P2rx7tm1Lex) were described. A floxed humanized P2X7R 

knock-in mouse (P2rx7tm1.1(P2RX7)Jde) showed an abnormal sleep pattern upon 

hP2X7R deletion. 

   Despite invaluable information derived from the early knockout models, some 

caveats need to be considered: P2rx7tm1Ipch and P2rx7tm1Gab mice express alternative 
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splice variants and incomplete receptor transcripts, respectively. The P2X7k variant 

expressed in the P2rx7tm1Ipch mouse is functional and highly expressed in T cells 

(Kaczmarek-Hajek et al., 2012). Also, most published knockout mice were generated 

using ES-cells derived from 129 mouse strains and the existence and possible 

functional effects of 129-derived passenger genes or mutations that remain upon 

back-crossing into other strains need to be considered, as shown for P2rx4tm1Rass 

mice (Er-Lukowiak et al., 2020), which contain the "gain-of-function" P2X7L451P 

variant. Finally, compensatory effects cannot always be excluded in non-conditional 

knockout mice. 

   In 2007, the International knockout mouse consortium (IKMC) formed with the aim 

to knockout each of the >20.000 protein-coding mouse genes in C57BL/6N-derived 

ES cells. To this end, the KOMP, EUCOMM, NorCOM, and TIGM programs 

coordinated their strategies to acquire, generate, archive and distribute knockout 

strains and disseminate the respective data. Within KOMP, two high-throughput 

gene targeting pipelines were established: 1) a BAC-derived targeting vector-based 

approach (Valenzuela et al., 2003) to create null mutant alleles by preferentially 

deleting all sequences from the start ATG to the stop codon (used by the VelociGene 

group) and 2) a gene trapping approach (Skarnes et al., 2011) to create "ko-

first/conditional-ready" alleles (Figure 4B) for tissue- or time specific gene deletion 

(used by Children’s Hospital Oakland Research Institute, Wellcome Trust Sanger 

Institute, University of California at Davis (KOMP-CSD)). The latter approach is also 

used in the EU-funded EUCOMM program. In the succeeding EUCOMM Tools 

program, inducible forms of Cre recombinase (CreERT2) together with an EGFP 

reporter are now knocked-in into genes with useful expression patterns such as 

P2rx7tm1(EGFP_CreERT2)Wtsi. 

   Furthermore, standardized phenotyping projects were launched and so far, data for 

P2X2R (non-significant), P2X4R (clavicle morphology, heart weight), P2X5R (gait, 

preweaning lethality), P2X6R (cholesterol level, body fat), and P2X7R (cataract, eye 

morphology) are available at the International Mouse Phenotyping Consortium 

(IMPC) web site (www.mousephenotype.org). 

   Additionally, P2X reporter mice that express soluble fluorescent reporter proteins 

or fluorescent protein-tagged receptors are becoming available (Figure 4A). While 

both the BAC transgenic Tg(P2rx4-tdTomato)1Khakh (expressing soluble tdTomato) 

and the  P2rx4mCherryIN knock-in mouse (conditionally expressing mCherry-tagged 

https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=483
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P2X4) reliably reported P2X4R expression (Xu et al., 2016; Bertin et al., 2020), two 

BAC transgenic P2X7R reporter mice (Tg(P2rx7-EGFP)FY174Gsat and Tg(RP24-

114E20-P2X7-His-StrepEGFP)Ani (expressing soluble and P2X7-fused EGFP, 

respectively), show highly divergent expression patterns (Kaczmarek-Hajek et al., 

2018), further demonstrating the need for careful characterization of mouse models, 

in particular those generated in high-throughput approaches. Most recently, a 

knockin P2X2Cre mouse was described, which upon crossing with Cre-sensitive 

reporter mice reveals P2X2 expression (Kim et al, 2020). 

 

 

5.  CLONED PRIMITIVE P2X RECEPTORS 

 

The cloning of P2XRs from primitive organisms including amoeba and algae, 

demonstrate the early utilization of ATP as a fast transmitter molecule (Fountain & 

Burnstock, 2009). Those cloned to date have low protein sequence homology with 

mammalian P2XRs, typically 20-40%, and as such, a different nomenclature has 

been devised from that of mammalian P2XRs. This system includes a prefix of an 

italicized short form of the species the receptor was cloned from, and in cases where 

multiple subtypes are identified, a letter is denoted in subscript (e.g. DdP2XA, 

Dictyostelium discoideum P2XR subtype A). The National Centre for Biotechnology 

(NCBI) accession number is given for each cloned receptor in parenthesis as they 

are introduced in the following sections. Bioinformatic analysis predicts further 

primitive P2XRs (Fountain & Burnstock, 2009), but this section describes those that 

have been cloned and are reported to form functional P2XRs. 

 

Dictyostelium discoideum is a soil-living amoeba that transitions to a multicellular 

developmental lifecycle. Five P2XRs have been cloned, DdP2XA (XM_640286), 

DdP2XB (XM_638738), DdP2XC (XM_638739), DdP2XD (XM_631676) and DdP2XE 

(XM_631865). DdP2XC does not form functional channels following heterologous 

expression in HEK293 cells or Xenopus laevis oocytes (Fountain et al., 2007). 

DdP2XD forms functional channels under low external Na+ conditions (Baines et al., 

2013). The functional receptors display a rank order in sensitivity to ATP of DdP2XA 

(EC50 97 µM) > DdP2XB (EC50 266 µM) > DdP2XE (EC50 511 µM). For DdP2XA, β,γ-

imido-ATP (EC50 15 µM) and α,β-methylene-ATP (EC50 95 µM) are full agonists and 
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BzATP is a weak partial agonist (25% activation at 3 mM). β,γ-Imido-ATP is a full 

agonist at DdP2XB receptors (EC50 85 µM) and weak partial agonist at DdP2XE 

receptors (22% activation at 3 mM). DdP2XA, DdP2XB and DdP2XE receptors are 

insensitive to suramin, PPADS and TNP-ATP, but inhibited by Cu2+ (DdP2XA, IC50 40 

nM; DdP2XB, 85% inhibition at 100 nM; DdP2XD, 30% inhibition at 100 nM; DdP2XE, 

70% inhibition at 100 nM). 

 

Further P2XRs with variable sensitivities to P2XR ligands have been described in 

Schistosoma mansoni, Ostreococcus tauri, Monosiga brevicollis, Hypsibius dujardini, 

Boophilus microplus, and Lymnaea stagnalis (Fountain, 2013).  

 

6.  P2X1 RECEPTOR 

 

P2XR1 gene and structure. The P2RX1 gene (ENSG00000108405) is on human 

chromosome 17p13.3, is 2,662 base pairs long, has 12 exons and encodes a protein 

of 399 amino acids. The Ensembl Gene database lists 4 splice variants and 262 

species orthologues. In common with all other P2XR subtypes, 102 species 

orthologues are present in placental mammals and they are also present in birds, 

reptiles and fish, but not Caenorhabditis elegans, Drosophila melanogaster and 

Saccharomyces cerevisiae. 

   The homomeric P2X1R is a rapidly-desensitizing, non-selective cationic channel, 

with a relatively high permeability to Ca2+ (Egan & Khakh, 2004). Recombinant P2X1 

subunits also form functional heteromultimers with the P2X2, P2X4 and P2X5 

subunits, but this has not as yet been reported in vivo, with the exception of P2X1/5 

(see Kennedy, 2015). 

 

Expression. P2RX1 mRNA and P2X1R protein are widely expressed throughout the 

body (Burnstock & Knight, 2004; Kennedy, 2015). P2X1 is the predominant P2X 

subunit present in most smooth muscle tissues, including vas deferens, arteries and 

urinary bladder. Recently, Mahaut-Smith et al. (2019) created a P2X1R-eYFP knock-

in mouse, enabling receptor expression to be viewed in live cells. Confirming earlier 

reports, P2X1R-eYFP fluorescence was seen in urinary bladder and arterial smooth 

muscle cells, platelets and megakaryocytes, but was absent from the CNS. 

Furthermore, the receptor is highly mobile within the plasma membrane and likely 
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present in lipid rafts, cholesterol-rich microdomains that are involved in receptor 

signalling and trafficking. 

 

Neurotransmission. P2X1Rs mediate the actions of ATP when it is released as an 

excitatory cotransmitter with noradrenaline from sympathetic and with acetylcholine 

from parasympathetic nerves. Initial evidence depended upon P2X1R 

desensitization by α,β-meATP or inhibition by antagonists, but the clearest evidence 

is provided by gene knockout (see Kennedy, 2015 and references therein). This 

greatly decreased the amplitude of sympathetic contractions of mouse vas deferens 

and was associated with a 90% fall in fertility. Simultaneous knockout of α1A-

adrenoceptors caused total infertility. Thus P2X1Rs clearly play a crucial role in male 

reproductive function. Sympathetic, purinergic cotransmission in arteries mediates 

vasoconstriction, but its contribution to mean arterial blood pressure is unclear. 

   Parasympathetic nerves mediate contraction of urinary bladder detrusor smooth 

muscle, causing voiding of urine. In most species, atropine only partially inhibits 

these contractions and P2X1R knockout abolished the remaining response. 

Interestingly, P2X1R antagonists failed to mimic the effect of P2X1R knockout and it 

was suggested that ATP may act at both the homomeric P2X1R and at the P2X1/4R 

heteromer to elicit urinary bladder contraction (Kennedy et al., 2007). 

 

Thrombosis. P2X1Rs mediate Ca2+ influx in platelets, but P2X1R knockout mice do 

not show spontaneous bleeding or increased bleeding time (Hechler et al., 2003). 

Fewer knockout mice died, however, in an in vivo model of acute obstruction of the 

lung microcirculation. Furthermore, thrombi formed by localized damage to arterioles 

were smaller and easily dispersed. Thus platelet P2X1Rs may contribute to thrombi 

formation, particularly in arterioles, which are narrow and associated with a high 

shear stress. 

 

Dysfunctional urinary bladder. Atropine abolishes neurogenic contractions of the 

healthy urinary bladder in humans, but atropine-resistant contractions appear with 

increasing age and in chronic disorders, such as interstitial cystitis, idiopathic 

detrusor instability and overactive bladder syndrome. They are abolished in vitro by 

prolonged exposure to α,β-meATP, indicating mediation by P2X1Rs, though this has 

yet to be been confirmed using P2X1R antagonists (see Kennedy, 2015). 
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Inflammation. ATP released by stressed or damaged cells, or in response to 

inflammatory stimuli, acts via P2X4Rs, P2X7Rs, P2Y1Rs, P2Y2Rs, P2Y6Rs as a 

Damage-Associated Molecular Pattern (DAMP) signalling molecule to elicit 

proinflammatory responses in macrophages and neutrophils (Di Virgilio et al., 2020). 

Lecut et al. (2012) reported that P2X1R knockout increased mortality due to 

lipopolysaccharide (LPS)-induced endotoxemia, but Maître et al., (2015) saw a 

decrease, whilst there was no difference in the mortality rate from septic shock 

induced by uropathogenic Escherichia coli (Greve et al., 2017). The reasons for this 

variability are unclear, but may reflect differences in the serotype of the pathogenic 

stimulus used. 

   Platelets also contribute to inflammation by facilitating immune cell recruitment and 

activation. In a mouse model of colitis, platelet depletion or P2X1R knockout caused 

intestinal bleeding, leading to macrocytic regenerative anaemia, whereas neutrophil 

depletion reduced blood loss (Wéra et al., 2020). Thus platelet and neutrophil 

P2X1Rs may have protective roles in the inflamed intestine.  

 

P2RX1 single nucleotide polymorphisms (SNPs) in cancer. The HIVE Lab database 

lists 86 unique P2RX1 SNPs in cells from multiple types of cancer that change the 

P2X1R protein sequence. Whether these contribute to the development and/or 

maintenance of cancer is unknown, but many are predicted to be “probably 

damaging”. A significant reduction in P2RX1 mRNA expression was identified in 

several cases, but it is unclear if this is a cause or effect of the cancer.  

 

7.  P2X2 RECEPTOR 

 

The P2RX2 gene. The first PRX2 cDNA encoding the rP2X2 subunit protein (UniProt 

ID P49653.1) was expression-cloned from pheochromocytoma cells using Xenopus 

laevis oocytes (North, 2002). The Ensembl database locates the hP2RX2 gene 

(ENSG00000187848) on chromosome 12 (between 132,618776 and 132,622,388 

bp) and predicts eight splice variants. The P2RX2 genomic structure consists of 11 

exons and ten introns and is highly conserved among human and rat.  

 

Homotrimeric and heterotrimeric P2X2R proteins. P2X2 subunits assemble during 

their endoplasmic reticulum-bound synthesis into homotrimers (Nicke et al., 1998, 
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Aschrafi et al., 2004). The contacts between the subunits relevant for trimerization 

are located in the ectodomain, while the TMs support assembly by restricting the 

folding space (Duckwitz et al., 2006). P2X2 subunits are co-expressed with other 

P2X subtypes in many cell types; in recombinant systems they can co-assemble to 

functional and stable heterotrimers, such as P2X2/1R, P2X2/3R, P2X2/5R and 

P2X2/6R (Hausmann et al., 2015).  

   There is no direct X-ray or cryo-EM structure of a PX2R available, but X-ray 

templates from the zfP2X4R (see Section 3.) enabled building P2X2R homology 

models, which proved to be reliable. Achievements of these models include: (1) 

understanding P2X2R channel gating; (2) localization of potency-determining 

residues of the P2X2R antagonist NF770 (a suramin derivative) by homology 

docking; (3) disclosure of lateral fenestrations as ion access pathways to the channel 

pore; (4) identification of ionic coordination of ATP4- into its binding pocket as an 

opening mechanism to break a salt bridge that stabilizes the closed state 

(Hausmann et al., 2015). The subtype-specific signatures of the homotrimeric 

P2X2R channel are (1) fast activation by external ATP, (2) virtually no activation by 

up to 300 µM external α,β-meATP, and (3) among all P2XR subtypes, the most 

stable steady-state current during prolonged ATP exposure, with slow or no 

desensitization (North, 2002). The main active form of ATP at the P2X2R is free ionic 

ATP (ATP4-; EC50 2.0  0.7 µM in divalent-free solution); the Mg2+-complexed form 

MgATP2- binds with much lower affinity and is thus largely ineffective in opening the 

P2X2R (Li et al., 2013).  

 

P2X2R expression and physiological functions. P2RX2 mRNA and P2X2R protein 

are expressed abundantly throughout the body on neurons and non-neuronal cells 

(Cockayne et al., 2005). The Human Brain Atlas (http://proteinatlas.org) points to a 

particularly high P2RX2/P2X2R expression in the hippocampal formation. Compared 

to the widespread expression in the nervous system, the behavioral phenotype in 

P2X2R knockout mice is remarkably inconspicuous in terms of general excitability of 

the CNS and sensory and motor function (Cockayne et al. 2005). Essential 

physiological P2X2R functions are their contribution to the sensitivity of the carotid 

body to hypoxia by stimulating afferent fibers of the sinus nerve (Rong et al. 2003) 

and their involvement in taste perception in an epithelial-to-neuronal mode of 

http://proteinatlas.org/
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signaling. Exposure of oral taste receptor cells to taste stimuli releases ATP that 

activates P2X2R and P2X3R, which are co-expressed in the taste buds that 

innervate the tongue (Cockayne et al. 2005). P2X2R/P2X3R double knockout mice 

are taste-blind to all taste stimuli, while responses to touch, temperature and menthol 

remain unaffected. However, single knockout of either P2X2Rs or P2X3Rs only 

slightly reduces taste responses (Finger et al. 2005). This implies that in addition to 

the heterotrimeric P2X2/3R, the homotrimeric P2X2R and/or P2X3R must also be 

involved in taste perception. A plausible explanation is that presynaptic homotrimeric 

P2X2Rs are needed to stimulate ATP secretion via an autocrine positive feedback 

(Huang et al. 2011).  

 

P2X2R and auditory system. The P2X2R is abundantly expressed in the cochlea, the 

sensory hair cells of the organ of Corti, the tectorial membrane, the Reissner’s 

membrane and spiral ganglion neurons. Sustained elevated noise levels release 

ATP into the cochlear endolymph via connexin hemichannels. This ATP activates 

P2X2Rs on epithelial cells lining the endolymphic compartment. The induced inward 

current reduces the endocochlear potential, and, consequentially, hearing sensitivity. 

In short, ATP is an auditory neurotransmitter that regulates hearing sensitivity via the 

P2X2R (for references see (Mittal et al., 2016)). 

   The Orphanet database for rare diseases and orphan drugs assigns P2RX2 to a 

single disease-causing germline mutation, autosomal dominant deafness DFNA41. A 

genomic analysis of a DFNA41 family in China revealed a V60L mutation in the 

hP2RX2 gene (Yan et al., 2013). Heterozygous family members experienced 

accelerated noise-induced hearing loss to high frequencies in adolescence. V60L-

hP2X2 subunits assemble as a constitutively-active, ATP-insensitive channel 

(George et al., 2019). A second mutation most likely causing autosomal dominant 

deafness, G353R-hP2X2R, was detected in an Italian family. G353R-hP2X2R exhibits 

alterations in sensitivity to ATP, inward rectification, and ion selectivity (George et al., 

2019). Altogether, these results establish an essential role of the P2X2R for the 

preservation of hearing. 
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8.  P2X3 AND P2X2/3 RECEPTORS 

 

P2RX3 and P2RX3R genes and the respective homomeric and heteromeric proteins. 

The ensemble database reports mP2rx3 (ENSMUSG00000027071), rP2rx3 

(ENSRNOG00000008552), and hP2RX3 (ENST00000604659) cDNAs encoding full 

receptor proteins. The mP2rx3 has two and the hP2RX3 only one protein coding 

splice variant. The rP2X3R protein was cloned from dorsal root ganglia (DRGs), 

which when expressed in Xenopus laevis oocytes, yielded a channel responding to 

ATP with a rapidly desensitizing current (Chen et al., 1995). Soon afterwards it was 

found that the co-expression of rP2X3R with rP2X2R yielded ATP-activated currents 

that slowly desensitized and resembled those recorded in rat nodose ganglia (Lewis 

et al., 1995). Apparently, sensory neurons of the DRG possess a mixture of P2X3R 

and P2X2/3R channels, while nodose ganglia possess only P2X2/3Rs. Both P2X3Rs 

and P2X2/3Rs respond to the agonist α,β-meATP with the typical inward currents, 

although P2X2Rs are insensitive to α,β-meATP. Originally it was assumed that 

P2X2/3Rs consist of an obligatory combination of two P2X3 and one P2X2 subunit 

(Jiang et al., 2003), but later an inverse combination of the two types of subunits 

[(P2X2)2/(P2X3)1] was shown to be also functional in expression systems for 

recombinant receptors (Kowalski et al., 2015). 

 

P2X3R and P2X2/3R distribution and function. In addition to postsynaptic P2X3Rs 

and P2X2/3Rs located at the cell bodies of sensory neurons, presynaptic P2X3Rs 

and P2X2/3Rs have a facilitatory role to enhance glutamatergic neurotransmission 

from the central terminals of sensory neurons onto the cell bodies of spinal cord 

afferent neurons (Khakh & North, 2012). The regulation of P2X3R and P2X2/3R 

expression in pathophysiology is complex. Both up and down regulation of individual 

receptor subunits has been documented in various experimental models (North & 

Jarvis, 2013; Bernier et al., 2018). This variability is likely dependent on specific 

contextual influences, including neuroanatomical structure and biochemistry. The 

ability of ATP to evoke ectopic neuronal hypersensitivity may not be solely 

dependent on intrinsic P2X3R or P2X2/3R activation, since functional interactions 

with other P2Rs, ligand-gated ion channels, and multiple signaling pathways have 

been described (Bernier et al., 2018). 
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   Important insights regarding the physiological roles of P2X2Rs, P2X3Rs and 

P2X2/3Rs were gained through the functional analysis of transgenic and transient 

gene disrupted (i.e. P2X3 antisense) mice (North and Jarvis, 2013). Genetic 

disruption of each of these individual P2XRs resulting in a complete loss of receptor 

expression has been shown to reduce sensory nerve function and a concomitant 

diminution of nociceptive and hyperactive bladder responses (North & Jarvis, 2013; 

Ford & Udem, 2013). Transgenic mice lacking both P2X2Rs and P2X3Rs also show 

alterations in taste sensitivity to bitter and sweet substances (Finger et al., 2005).  

 

P2X3R antagonists in clinical concept trials. Studies using nonselective antagonists 

or agonist-induced down-regulation of P2X3Rs provided preliminary evidence for the 

roles of these receptors in sensory systems (Jarvis & Khakh, 2009). Subsequently, in 

vivo studies using P2X3R and P2X2/3R selective antagonists generated evidence 

that blocking these receptors leads to diminished nociceptive sensitivity in a variety 

of experimental pain models, reduced bladder reflexes and elevated bladder volume 

thresholds and reduced airway sensitivity in preclinical cough models (Ford & Udem, 

2013; North & Jarvis, 2013). 

   Gefapixant (AF-219, MK-7264), the potent and reversible noncompetitive 

antagonist of P2X3Rs, is approximately 3-fold less potent at P2X2/3Rs (Richards et 

al. 2019). Gefapixant and closely related diaminopyrimidine class structural 

analogues inhibit P2X3R‐dependent action potentials in afferent neurons innervating 

peripheral tissues in a variety of nociceptive, urological, and respiratory models 

(Richards et al., 2019; Ford & Udem, 2013). 

   Gefapixant is orally bioavailable, peripherally restricted and has suitable drug-like 

properties enabling exploration of its therapeutic potential in humans (Ford & Udem 

2013). A consistent tolerability finding for gefapixant-treated patients is a high 

prevalence of altered taste sensitivity (dysgeusia; Smith et al., 2020). This appears 

to be dose-dependent, indicating a potential for optimization of a dose to maintain 

antitussive efficacy, while minimizing dysgeusia (Smith et al., 2020). 

   Based on the known physiological roles of P2X3Rs and P2X2/3Rs, their 

expression on taste buds (Finger et al., 2005) and the phenotype of double knockout 

mice lacking both P2X2Rs and P2X3Rs, gefapixant-mediated dysgeusia is likely 

mediated by block of the heteromeric P2X2/3Rs (Garceau & Chauret, 2019). First 

generation non-nucleoside P2X3R antagonists show little selectivity in blocking 
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homomeric P2X3Rs and heteromeric P2X2/3Rs (North & Jarvis, 2013). However, 

more recently discovered P2X3R antagonists, including the imidazo-pyridine, BLU-

5937, have stereoselective preferential affinity at P2X3Rs, with several orders of 

magnitude lower affinity at P2X2/3Rs (Garceau & Chauret, 2019). BlU5937 is 

currently in a proof of concept trial for chronic cough.  

 

9.  P2X4 RECEPTOR 

 

The P2RX4 gene, splice variants and SNPs. The P2X4R was identified as a distinct 

member of the P2X family of receptors in 1995-1996, when it was cloned from rat 

whole brain, hippocampus, and superior cervical ganglia cDNA libraries and 

characterized by heterologous expression. During 1997-2001, human (hP2RX4, 

ENSG00000135124), mouse, chick, and Xenopus laevis receptor cDNAs were also 

cloned and characterized. Subsequently, rabbit, dog, frog, and zebrafish P2X4Rs 

were identified (Kaczmarek-Hajek et al., 2012). The hP2RX4 gene is located at 

12q24.32, close to the P2RX7 gene. The crystal structure of P2X4R was resolved for 

the zebrafish receptor (Hattori & Gouaux, 2012; Kawate et al., 2009; see Section 3.). 

P2X4 subunits form functional homotrimers and heterotrimers with P2X1 and P2X6 

subunits in expression systems for recombinant receptors. hP2RX4 and mP2rx4 are 

alternatively spliced, but the shorter forms do not form functional channels 

(Kaczmarek-Hajek et al., 2012). In addition, there are four non-synonymous coding 

SNPs in the hP2RX4 gene, but only Tyr315Cys affects the receptor function (Stokes 

et al., 2011). 

 

Homomeric and heteromeric P2X4R proteins. Native and recombinant homomeric 

P2X4Rs activate rapidly and desensitize incompletely with moderate rate, both in an 

ATP concentration-dependent manner, and deactivate rapidly and independently of 

ATP concentration. Thus, the receptor functions as a non-selective cationic channel, 

and its permeability for Ca2+ is the highest among the family (Egan & Khakh, 2004). 

The P2X4R is one of the most sensitive receptors to ATP, whereas the 315Cys-

P2X4 mutant is less sensitive to ATP (Stokes et al., 2011). The homotrimeric and 

heterotrimeric P2X4Rs, but not most other P2XRs, are sensitive to ivermectin, which 

acts as a PAM of these channels (Zemkova et al., 2015). 
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   Homotrimeric and heterotrimeric P2X4Rs also undergo rapid constitutive and 

agonist-induced internalization into early endosomes and lysosomes and 

subsequent reinsertion into the plasma membrane (Bobanovic et al., 2002). 

Internalization of P2X4Rs is clathrin- and dynamin-dependent and determined by the 

C-terminal interacting with adapter protein 2 (AP2); mutation of either the endocytic 

motif or the Tyr binding pocket of AP2 leads to accumulation of functional receptors 

in the plasma membrane. Native P2X4Rs in cultured rat microglia, macrophages, 

and vascular endothelial cells are localized predominantly in lysosomes, where they 

retain their functionality and subsequently move out to the plasma membrane. This 

finding led to speculation about their intracellular functions (Kaczmarek-Hajek et al., 

2012). 

 

Distribution and function. P2X4Rs are abundantly expressed in neurons and glial 

cells of several brain regions, including olfactory bulb, cerebral cortex, subcortical 

telencephalon, cerebellum, hypothalamus, thalamus, midbrain, hindbrain, and 

ventricular structures. P2X4Rs are also present in spinal cord microglia, peripheral 

neurons, including somatosensory cortical, nodose ganglion, trigeminal, vestibular 

ganglion, and spinal cord neurons, in addition to Schwann cells. In the mammalian 

retina, the receptor was identified in both neurons and glia (Montilla et al., 2020). The 

neuroendocrine cells of the hypothalamus and pituitary gland and the endocrine cells 

of the thyroid and adrenal glands also express P2X4R (Bjelobaba et al., 2015). In the 

cardiovascular system they are located in cardiac and vascular smooth muscle cells 

and endothelial cells (Ralevic, 2015).  

   Numerous studies have shown a role for P2X4Rs in allodynia associated with 

chronic neuropathic pain, a persistent pain arising from changes in spinal cord 

processing pathways (Inoue, 2019). After nerve injury, overexpression of P2X4Rs in 

Schwann cells was reported to promote motor and sensory functional recovery and 

remyelination via brain-derived neurotrophic factor (BDNF) secretion. Furthermore, 

the P2X4R has a role in neuroinflammation, the complex biochemical and cellular 

response occurring during infections of the brain and the spinal cord, with the 

participation of microglia, astrocytes, and endothelial cells. Spinal cord injury, brain 

ischemia, and trauma increase P2X4R expression in microglial cells, which could be 

involved in inflamed lesions in the brain that persist for days/weeks after an ischemic 

stroke. The P2X4R may also play a role in neurodegenerative diseases, such as 
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Parkinson's disease, Alzheimer's disease (AD) and multiple sclerosis; they are 

associated with neuroinflammation that is accompanied by P2X4R-dependent 

microglia activation. Expression of P2X4Rs is upregulated in activated microglia from 

rats with experimental autoimmune encephalomyelitis (a model of amyotrophic 

lateral sclerosis) and in human multiple sclerosis optic nerve samples and they 

appear to facilitate repair response after demyelination (Montilla et al., 2020). Finally, 

activated P2X4Rs stimulate electrical activity, Ca2+ signaling, and neuro-hormone 

secretion in neuroendocrine cells (Bjelobaba et al., 2015). 

 

Transgenic and knockout models (see also Section 4.). A transgenic mouse model 

overexpressing the human P2X4 subunit exhibited increased contractility of 

cardiomyocytes and greater global contraction performance in intact heart compared 

to WT animals (Hu et al., 2001). Overexpression of human P2X4R in a calsequestrin 

transgenic mouse model of cardiomyopathy significantly delayed heart failure 

progression and increased life expectancy by more than two-fold (Yang et al., 2004). 

The P2X4R also contributes to the control of large vessel tone through endothelial-

dependent NO release and arterial smooth muscle relaxation. Consistently, P2X4R 

knockout mice and human carriers of low functional 315Cys-P2X4R have raised 

blood pressure (Braganca & Correia-de-Sa, 2020).  

 

10.  P2X5 RECEPTOR 

 

P2rx5 receptor gene. The human P2rx5 gene (ENSG00000083454), located on 

17p13.2, occurs as two alleles: T allele and G allele. The T allele leads to mature 

transcription of a full-length P2X5 subunit of 444 amino acids, and assembly of 

functional P2X5R ion channels (Kotnis et al., 2010). The G-allele appears in samples 

of human genomic DNA, but not in other mammals (Kotnis et al. 2010). The 3’-splice 

site (GGTCGTgggat) of exon 10 contains gg on the intronic side rather than gt, at 

which RNA splicing occurs (Bo et al., 2003). This SNP results in a shorter subunit, 

which lacks the 22 amino acids encoded by exon 10 (Lê et al. 1997; Duckwitz et al. 

2006). Assemblies of the exon 10-deleted hP2X5R are retained in the cytosol by the 

endoplasmic reticulum (Duckwitz et al. 2006). 
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P2X5R protein. rP2XR5 and mP2X5 subunits share 95% homology over their 455 

amino acid length, and 62% homology with the full length hP2X5 subunit. rP2X5R 

and mP2X5R channels are remarkable for producing very small currents to 

supramaximal ATP concentrations, around 5% of the amplitude of inwards currents 

generated under equivalent conditions by other P2XRs expressed in cell lines or 

Xenopus laevis oocytes (Collo et al., 1996). Light was shed on the cause of the small 

ATP responses, using a series of chimeric P2X5Rs bearing rat peptide sequences 

replaced with human equivalents (Sun et al., 2019). Two rP2X5R chimeras yielded 

considerably larger ATP responses: rP2X5R-Chimera 3, Ile50-Arg114 (72 pA/pF); 

rP2X5R-Chimera 5, Leu171- Lys205 (162 pA/pF); cf. rP2X5R-WT (2 pA/pF). Single 

substitution experiments subsequently revealed that any one of three mutations 

(Ser191Phe, Phe195His and Val67Iso) significantly improved functionality of 

rP2X5Rs by improving ATP binding at its docking site (Sun et al., 2019). 

   When stimulated by ATP, P2X5R functions as a slowly-desensitizing, non-selective 

cationic channel (PCa/PNa = 1.5). Unlike other P2XRs, the P2X5R is also permeable 

to chloride ions (PCl/PNa = 0.5) (Bo et al., 2003).  

 

P2X5R function. Functional P2X5Rs may play a supporting role in the inflammatory 

response. Gene deletion of P2X5R (mP2rx5-/-) decreased inflammatory bone loss in 

the parietal calvarium (skull), in vivo, without affecting normal bone development and 

homeostasis (Kim et al. 2017). Additionally, expression levels of pro-inflammatory 

IL1β, IL6, IL17a and TNF-sf11 were significantly lower in P2rx5−/− mice compared to 

WT mice (Kim et al., 2018).  

 

11.  P2X6 RECEPTOR 

 

P2rx6 gene and P2X6R protein. The encoding DNA for the protein subunit has been 

identified in the human genome (ENSG00000099957) at 22q11.21. P2X6R is an 

ATP-gated ion channel when fully glycosylated. In 25 years, only two groups have 

succeeded in characterizing functional rP2X6Rs (Collo et al., 1996; Jones et al., 

2004). In both studies, around 5% of transfected HEK293 cells yielded agonist 

responses to ATP and other nucleotides and P2X6Rs functioned as slowly-

desensitizing, non-selective cationic channels. 
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   N-linked glycosylation of ion channels can affect subunit folding, oligomeric 

assembly, trafficking to the membrane, agonist binding and channel opening. The 

extracellular domain of P2X6R contains the NXS/T glycosylation motif at three sites, 

with asparagine (N) residues at positions 157, 187, and 202 of the rat isoform 

(Newbolt et al. 1998; Rettinger et al. 2000; Jones et al. 2004). Functional and non-

functional rP2X6R proteins extracted from HEK293 cells were discriminated by the 

molecular mass of epitope-tagged P2X6 subunits of 70 kDa and 60 kDa MW, 

respectively (Jones et al. 2004). Treatment with N-glycosidase-F reduced the 

molecular masses to 50 kDa, which is the expected size of the non-glycosylated 

P2X6 protein subunits. Thus, the efficiency of subunit glycosylation may hold the key 

to whether or not P2X6R express functionally. 

 

P2X6R distribution and function. There has been renewed interest in P2X6R 

expression, based on two observations. Firstly, glycosylation of P2X6 subunits may 

be more efficient in native cell types compared to expression systems, producing the 

70 kDa P2X6 subunits identified in adult midbrain, atrium, kidney, thymocytes and 

urinary bladder (Jones et al. 2004). Secondly, non-glycosylated P2X6R was shown 

to be translocated through the nuclear pore complex to the nucleus of mouse 

hippocampus neurons, where it interacted with the splicing factor (SF3A1), to reduce 

the incidence of mRNA splicing (Diaz-Hernández et al. 2015). A recent clinical study 

has implicated P2X6R overexpression in the progression and poor prognosis of renal 

cell cancer in human patients (Gong et al. 2019). 

 

12.  P2X7 RECEPTOR 

 

The P2RX7 gene, splice variants and SNPs. hP2X7R is encoded by the hP2RX7 

gene (ENSG00000089041) on the long arm of chromosome 12, at 12q24.31 (Bartlett 

et al., 2014), close to the hP2RX4 gene (12.q24.32), while mP2rx7 is located on 

chromosome 5. Several nonsynonymous, intronic, or missense SNPs have been 

reported in the hP2RX7 gene. A number of P2X7R isoforms derived from alternative 

splicing were identified both in humans and in rodents (Bartlett et al., 2014). Some 

variants are expressed and functional, e.g. human P2X7BR, and mouse and rat 

P2X7R variant “k”.  
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   Some SNPs occurring in the coding region cause gain or loss of receptor function, 

and are variably associated to different disease conditions. Linkage studies 

suggested that the SNP rs2230912 coding for Gln460Arg-P2X7R is connected with 

major depression and bipolar disorder, although this has been questioned by others 

(Illes et al. 2019c). 

 

The P2X7R protein. The P2X7R has the lowest affinity for ATP among all P2Rs, a 

feature that has often raised doubts on its pathophysiological role. However, it is now 

clear that at sites of inflammation or in cancer, the local extracellular ATP 

concentration can rise to levels close to those needed to stimulate the P2X7R (Di 

Virgilio et al, 2018a). In addition, some inflammatory factors may act as positive 

allosteric modulators, thus lowering the ATP threshold for P2X7R activation (Di 

Virgilio et al., 2018b). 

   It was suggested about twenty years ago that some P2XR channels (P2X2, P2X4, 

P2X7) exhibit progressive dilation during long lasting stimulation by ATP and that the 

generated pore is permeable to high molecular weight cationic dyes, such as NMDG, 

Yo-Pro, ethidium or propidium iodide (Di Virgilio et al. 2018b). However, later it was 

shown that this interpretation of the experimental data obtained by reversal potential 

measurements is probably misleading. Participation of associated channel-forming 

proteins has been implicated (e.g. pannexin-1 or connexin-43), but convincing 

evidence now supports the view that the P2X7R itself has the ability to form a large-

conductance pore in the absence of any significant dilatation; simply the P2X7R-

channel allows the passage of large cationic molecules immediately from its initial 

activation, but at a much slower pace than that of the small cations Na+, K+, and Ca2+ 

(Di Virgilio et al., 2018b). 

   An early argument brought up to support the assumed dilation of P2X7Rs was the 

facilitation of P2X7R currents during long-lasting or repetitive application of ATP or 

BzATP (Surprenant et al., 1996). However, this was later shown to be independent 

of the entry of cationic molecules via the receptor-channel and rather caused by a 

Ca2+/calmodulin-dependent current facilitation through some P2X7R orthologs (rat, 

but not human) (Roger et al., 2010) or the secondary activation of a chloride current 

e.g. in macrophages (Janks et al., 2019). 
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The P2X7R in the immune system. The P2X7R is widely expressed by myeloid and 

lymphoid immune cells, as well as by mast cells (Di Virgilio et al., 2017). Platelets 

also express the P2X7R, albeit at low level. The best characterized immune 

response associated with P2X7R stimulation is leucine-rich repeat, pyrin domain 

containing 3 (NLRP3) inflammasome activation and IL-1β secretion, but several 

other key immune responses (e.g. release of additional pro- or anti-inflammatory 

cytokines or chemokines, generation of reactive oxygen species, promotion of 

chemotaxis, stimulation/inhibition of phagocytosis, destruction of intracellular 

pathogens, formation of multinucleated giant cell at inflammatory granulomas) are 

promoted by P2X7R stimulation. Due to the relevance of the P2X7R in macrophage 

responses, the association of major infectious diseases with P2RX7 polymorphisms 

has been widely investigated, but with inconsistent results.  

   The P2X7R has a special place in the overall mechanism of IL-1β secretion since 

its gating by extracellular ATP allows the efflux of large amounts of cytosolic K+ that 

in turn drives NLRP3 assembly and caspase-1 activation. In fact, the P2X7R is the 

most potent plasma membrane receptor triggering pro-IL-1β processing and release 

(Di Virgilio, 2017), and thus is a crucial initiator of inflammation. P2X7R ko mice are 

less prone to initiate inflammation in response to a variety of stimuli. Secretion of 

mature IL-1β is severely reduced, and as a consequence, initiation of the cascade of 

inflammatory cytokines is also impaired (Solle et al., 2001).  

   Human neutrophils express functional P2X7Rs coupled to NLRP3 activation 

(Karmakar et al., 2016). In these cells, P2X7R activity is required for efficient 

clearance of Streptococcus pneumoniae-sustained bacterial infection (Karmakar et 

al, 2016). Dendritic cells (DCs) are the immune cell types that express the highest 

level of P2X7R. Different responses are dependent on P2X7R function in DCs, most 

notably antigen presentation (Mutini et al, 1999). It is highly likely that the P2X7R is a 

key component of the DAMP-sustained stimulatory circuit whereby adjuvants 

potentiate antigen presentation (Di Virgilio, 2017).  

   Very recently, the P2X7R was shown to be necessary to establish long-lived 

memory CD8+ cells, and thus play a major role in immunological memory (Borges da 

Silva et al., 2018). Certain Natural Killer (NK) cell subtypes also express high P2X7R 

levels that, as for CD8+ T lymphocytes, have a major role in supporting energy 

metabolism and maintaining these lymphoid cells fit. In the gut, the P2X7R is 

expressed by T follicular helper cells (Tfh) where it participates in Tfh-B cell 
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communication (Perruzza, 2017). P2X7R activity is understood to be necessary for 

the differentiation of IL-17-producing T lymphocytes in models of experimental 

arthritis (Fan et al., 2016) and for the induction of IL-23-dependent psoriatic 

dermatitis (Diaz-Perez et al., 2018). 

   The P2X7R is an important link between inflammation and coagulation since 

stimulation of macrophage and DC P2X7Rs drive a large microvesicle-mediated 

release of tissue factor (TF), the initiating agent of the extrinsic coagulation pathway 

(Baroni, 2007). The P2X7R is one of the most potent triggers for the release of 

exosomes and plasma membrane-derived microvesicles containing a vast array of 

intracellular components and exposing a variety of surface markers (Sluyter, 2017). 

Furthermore, P2X7R stimulation promotes vascular endothelial growth factor (VEGF) 

release and supports angiogenic activity in vivo (Adinolfi, 2012). Participation of the 

P2X7R in cancer growth and metastatization is increasingly recognized (Di Virgilio, 

2018a). 

 

The P2X7R in peripheral organs. Outside the immune system, the P2X7R is 

expressed by many different cell types, such as keratinocytes, corneal cells, 

hepatocytes, intestinal epithelial cells, vascular endothelial cells, retinal ganglion 

cells, fibroblasts, osteoclasts, osteoblasts, vascular smooth muscle, and skeletal 

muscle (Bartlett, 2014; Sluyter, 2017). It can be safely concluded that the P2X7R is 

ubiquitously expressed throughout the body, albeit to different levels. While the role 

of the P2X7R in the immune system is well established, in other tissues it is more 

elusive.  

 

P2X7Rs in the CNS. The mammalian CNS consists of neuronal and non-neuronal 

cells. The latter comprise mainly of glia (astrocyte-like cells, oligodendrocytes, 

microglia) and ependymal cells. Microglia are resident macrophages of the CNS, 

similar in function to blood-born peripheral immunocytes (monocytes/macrophages, 

lymphocytes), which cross the blood-brain barrier (BBB) only in case of massive 

infections or BBB damage of diverse origin. Microglia possess the highest density of 

P2X7Rs, surmounting that present in astrocytes/oligodendrocytes, whereas neurons 

appear to be devoid of this receptor (Illes et al. 2017). Effects attributed previously to 

the activation of neuronal P2X7Rs are now thought to be indirect, mediated by the 
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release/outflow of gliotransmitters, or other types of glial signalling molecules (Illes et 

al. 2019a).  

 

Involvement of P2X7Rs in neurological and psychiatric illnesses. Although 

neurodegenerative illnesses have specific and distinct causative factors, they 

generate also an additional neuroinflammatory component that aggravates the 

primary condition. P2X7Rs of glial cells are intimately involved in neuroinflammation 

and, therefore, P2X7R antagonists have a favorable symptomatic impact in case of 

these illnesses. Glial (especially microglial) P2X7Rs are stimulated by large 

concentrations of ATP released from CNS cells under noxious conditions, both 

during acute injury (trauma, hypoxia/ischemia, epilepsy-induced seizures) and 

chronic neurodegenerative conditions (AD, Parkinson’s disease, amyotrophic lateral 

sclerosis, multiple sclerosis) (Burnstock et al. 2011). 

   Epilepsy is typically thought to be the result of an enduring imbalance between 

excitation and inhibition in the brain (Engel et al. 2016). A major cause of long-lasting 

epileptic seizures termed “status epilepticus” (SE) is caused by the increased 

release of ATP. Kainic acid injection into the nucleus amygdala of mice induced 

seizure-like EEG activity; P2X7R blockers reduced electrographic seizures and 

cortical cell death. Conversely, when SE was induced by the systemic injection of 

pilocarpine, immediate seizure activity was increased, recurrent seizures following a 

one-time pilocarpine injection were facilitated, and this was thought to be due to the 

enhanced survival of hippocampal neural progenitor cells migrating into ectopic 

locations and generating a pathologic pace-maker (Rozmer et al. 2017). 

   The production of the neurotoxic molecules, β-amyloid (Aβ) and 

hyperphosphorylated tau have been assumed to cause AD and the cardinal clinical 

symptom, cognitive deterioration (Illes et al. 2019b). A diversity of investigations with 

primary microglial cultures and in vivo AD animal models suggested that Aβ induces 

an increase in [Ca2+]i in microglia via P2X7R stimulation and the subsequent 

massive release of ATP (Sanz et al. 2009). A possible chain of events is that ATP 

released from damaged CNS cell types stimulates microglial P2X7Rs and releases 

IL-1β, as well as other cell products. The beneficial effects of BBB-permeable P2X7R 

antagonists in AD animal models also support the notion of pathological microglial 

activation in AD (Csolle et al. 2013).  
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   As already mentioned, the SNP Gln460Arg-P2X7R is thought to be a predisposing 

factor for the affective diseases major depression and bipolar disease. In addition, 

various models of inescapable rodent stress lead to the generation of a behavioral 

reaction termed “learned helplessness” (Illes et al. 2019c). This is believed to be due 

to the increased secretion of adrenocorticotropic hormone (ACTH) and subsequently 

glucocorticoids thought to cause depressive-like behavior. Co-stimulation of 

microglial Toll-like receptors (TLRs) and P2X7Rs by DAMPs (ATP itself is the most 

ubiquitous DAMP) triggers NLRP3 activation and the associated IL-1β release, which 

is probably a major stimulus for the corticotropin-releasing hormone (CRH)-induced 

activation of the hypothalamic-pituitary-adrenal axis. In fact, P2X7R ko mice by 

themselves and WT mice after the application of P2X7R antagonists, exhibited an 

antidepressant-like profile in animal models of major depression and bipolar disorder 

(Basso et al. 2009). 

 

13.  CONCLUSIONS 

 

P2XRs appear very early in phylogeny (algae, amoeba and basal fungi) and it is a 

fascinating property of these primitive receptors that, in contrast to their mammalian 

counterparts, they are expressed predominantly or even exclusively intracellularly. 

The mammalian P2X1-7Rs reside mainly in the plasma membrane and their ATP-

induced opening and the subsequent cationic fluxes can regulate many essential 

cellular functions. Our knowledge of P2XR structure/function has greatly increased in 

the four decades elapsing since their discovery. Crystallization of the truncated 

zfP2X4R disclosed the structure of a chalice-shaped trimeric receptor that allows 

cations to flow through fenestrations to the vestibules near the ion channel, resulting 

in transmembrane ion fluxes. The zfP2X4R served as a pattern for homology 

modeling of mammalian P2XR-subtypes before they were crystallized and their 3D 

structure resolved.  

   Medicinal chemistry has made major contributions to the field by synthesizing 

subtype-selective antagonists and, with some temporal delay, positive and negative 

allosteric modulators. This is a pre-requisite of any conclusive experimental work and 

was therefore essential for moving the field ahead. Some of these antagonists were 

already prospective drugs in that they had favorable bioavailability after oral 

application and in case of an intended CNS activity, avidly crossed the BBB. 
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Indispensable for research activities was the generation of a battery of transgenic 

animals. Reporter mice that express soluble fluorescent reporter proteins or 

fluorescent protein-tagged P2XRs allowed targeted investigations of receptor-

containing cells or their subcellular compartments.  

   Especially important was the assignment of deficiencies in individual P2XR-

subtypes to certain diseases with a genetic background, and more recently 

population genetic studies aimed at the identification of loss-of-function SNPs 

pathogenically involved e.g. in affective diseases. In conclusion, structural 

deficiencies of P2XRs may underlay certain illnesses, and on the contrary, selective 

antagonists or negative allosteric modulators may correct the deleterious 

consequences of a pathological overstimulation by ATP (e.g. 

neuropathic/inflammatory pain or neurodegenerative illnesses). Although a P2XR-

based widely used drug is still missing in our therapeutic repertoire, the 

pharmaceutical industry is working intensively in this field and there is strong hope of 

achieving a major breakthrough in the near future (Cully, 2020, Krajewski, 2020). 

 

14.  NOMENCLATURE OF TARGETS AND LIGANDS 

 

Key protein targets and ligands in this article are hyperlinked to corresponding 

entries in http://www.guidetopharmacology.org, the common portal for data from the 

IUPHAR/BPS Guide to PHARMACOLOGY (Harding et al., 2018), and are 

permanently archived in the Concise Guide to PHARMACOLOGY 2019/20 

(Alexander et al., 2019). 
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Figure 1. Selected P2XR agonists, nucleotide-derived antagonists, and positive 
allosteric modulators.  
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Figure 2. P2X receptor subtype-selective antagonists. 
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Figure 3. Structures of selected P2XRs. (a) Structure of hP2X3R bound to ATP 
(PBD ID: 5SVK) (Mansoor et al., 2016). The hP2X3R is shown in blue cartoon 
representation, and ATP is shown as spheres (carbon is yellow, oxygen red, nitrogen 
blue and phosphorus orange). Horizontal grey bars indicate the approximate location 
of the membrane bilayer defining the extracellular (out) and intracellular (in) milieu. 
(b) Structure of zfP2X4R bound to ATP (4DW1) (Hattori & Gouaux, 2012). The 
zfP2X4R is shown in green cartoon representation, and ATP is shown as spheres. 
(c) Structure of rP2X7R bound to ATP (6U9W) (McCarthy et al., 2019). The rP2X7R 
is shown in cyan cartoon representation, and ATP is shown as spheres. (d) Structure 
of the invertebrate AmP2XR bound to ATP (5F1C) (Kasuya et al., 2016). The 
AmP2XR is shown in orange cartoon representation, and ATP is shown as spheres. 
Note the structural similarity between vertebrate and invertebrate P2XRs. For 
structures having undergone heavy truncations, membrane spanning helices are 
lacking in their intracellular sides. (e-g) Close-up views of ATP-binding sites from 
hP2X3R (e), zfP2X4R (f) and rP2X7R (g). For comparison, views are taken from 
similar angles, and displayed residues are equivalent across P2XRs, except for 
S275 and K193. For those not directly contributing to ATP binding (distance > 3.5 Å), 
equivalent residues are not displayed (e.g. K64 in rP2X7R). ATP is shown in stick 
representation (carbon is yellow, oxygen red, nitrogen blue and phosphorus orange) 
with positions of α-, β- and γ-phosphate. The oxygen atom from a glycerol molecule 
(GOL) is shown in sphere representation. Black dashed lines indicate hydrogen 
bonding (< 3.5 Å). hP2X3: human P2X3R; zfP2X4: zebrafish P2X4R; rP2X7: rat 
P2X7R; AmP2X: Gulf Coast tick Amblyomma maculatum P2XR.  
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Figure 4. Currently available P2XR mouse models according to the literature and 
Mouse Genome Informatics (MGI)/International Mouse Strain Resource (IMSR). (A) 
Strategies to target P2rx1-P2rx7 genes for the generation of knockout, knock-in, and 
transgenic mouse models. The nomenclature according to the current guidelines of 
the International Committee on Standardized Genetic Nomenclature for Mice is 
summarized in the inset and found on the mouse nomenclature home page 
(http://www.informatics.jax.org/mgihome/nomen/index.shtml). P2rx4mCherryIN is not 
named accordingly, yet. Light yellow boxes represent exons, black and coloured 
boxes represent introduced reporter/selection cassettes and/or cDNA. Circles behind 
the names indicate alleles that are only available in ES cells. In case of conditional 
strategies, only tm1a alleles („ko-first“) are shown. These can be further modified as 
described in (B). Further knockout strains are available from Taconic (deleted exons 
in brackets) for P2rx1 (2-7), P2rx4 (2-4), P2rx5 (1), P2rx6 (1-2), P2rx7 (2-3) and from 

http://www.informatics.jax.org/mgihome/nomen/index.shtml
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TIGM (gene trap vector insertion in brackets) for P2rx1 (IST14381H9), 
(IST12457B12) and P2rx3 (IST10786C2). In addition, P2rx2em1(IMPC)H, 

P2rx4Gt(OST340739)Lex, and Gt(ROSA)26Sortm10(RNAi:P2rx7)Rkuhn are available. Targeted 
reporter-tagged insertion with conditional (B) potential (ko-first, conditional ready) 
and reporter-tagged deletion alleles (C) and the respective nomenclature. Derivative 
alleles can be obtained through recombinase (Flp or Cre, as indicated) mediated 
changes (https://mpi2.github.io/IKMC-knowledgebase/2010/08/24/what-are-the-
allele-types.html). The lacZ reporter is supposed to be spliced to the upstream exon 
1 (A). However, skipping of lacZ (B) and splicing to the downstream (critical) exon 
(resulting in functional wt or hypomorph) cannot be excluded and needs to be 
experimentally determined. The critical exon is supposed to produce a frameshift 
mutation upon deletion. Note that tm1e represents an unplanned by-product of the 
original targeting strategy in which the 3´loxP site was lost during recombination but 
which might still be useful. For detailed information and references see Kaczmarek-
Hajek et al., 2012; Nicke et al., 2018); http://www.informatics.jax.org/, and 
http://www.findmice.org/.). 
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