15 research outputs found

    Torque Teno Virus (TTV) distribution in healthy Russian population

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Torque teno virus (TTV) is a circular, single-stranded DNA virus that chronically infects healthy individuals of all ages worldwide. There is a lot of data on the prevalence and genetic heterogeneity of TTV in healthy populations and in patients with various diseases now available. However, little is known about TTV load among healthy human population. In this study we analyzed TTV load in the group of 512 Russian elite athletes, who are supposed to be, by some standards, the healthiest part of the human population.</p> <p>Results</p> <p>The prevalence rate of TTV among the Russian Olympic Reserve members was 94% (for test sensitivity about 1000 genome equivalents per 1 ml of blood). Quantities varied from 10<sup>3 </sup>(which corresponded to detection limit) to 10<sup>10 </sup>copies per 1 ml of blood, with median at 2.7 Ă— 10<sup>6 </sup>copies.</p> <p>Conclusion</p> <p>About 94% of healthy individuals in Russian population have more than 1000 TTV genome copies per 1 ml of blood. This result exceeds the previously published data, and can be explained by either more sensitive PCR test system or by higher TTV distribution in Russian population or both. TTV viral load neither depends on gender, nor age.</p

    The protein tyrosine phosphatase receptor type R gene is an early and frequent target of silencing in human colorectal tumorigenesis

    Get PDF
    BACKGROUND: Tumor development in the human colon is commonly accompanied by epigenetic changes, such as DNA methylation and chromatin modifications. These alterations result in significant, inheritable changes in gene expression that contribute to the selection of tumor cells with enhanced survival potential. RESULTS: A recent high-throughput gene expression analysis conducted by our group identified numerous genes whose transcription was markedly diminished in colorectal tumors. One of these, the protein-tyrosine phosphatase receptor type R (PTPRR) gene, was dramatically downregulated from the earliest stages of cellular transformation. Here, we show that levels of both major PTPRR transcript variants are markedly decreased (compared with normal mucosal levels) in precancerous and cancerous colorectal tumors, as well in colorectal cancer cell lines. The expression of the PTPRR-1 isoform was inactivated in colorectal cancer cells as a result of de novo CpG island methylation and enrichment of transcription-repressive histone-tail marks, mainly H3K27me3. De novo methylation of the PTPRR-1 transcription start site was demonstrated in 29/36 (80%) colorectal adenomas, 42/44 (95%) colorectal adenocarcinomas, and 8/8 (100%) liver metastases associated with the latter tumors. CONCLUSIONS: Epigenetic downregulation of PTPRR seems to be an early alteration in colorectal cell transformation, which is maintained during the clonal selection associated with tumor progression. It may represent a preliminary step in the constitutive activation of the RAS/RAF/MAPK/ERK signalling, an effect that will later be consolidated by mutations in genes encoding key components of this pathway

    Increased risk of severe clinical course of COVID-19 in carriers of HLA-C*04:01

    Get PDF
    Background: Since the beginning of the coronavirus disease 2019 (COVID-19) pandemic, there has been increasing urgency to identify pathophysiological characteristics leading to severe clinical course in patients infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Human leukocyte antigen alleles (HLA) have been suggested as potential genetic host factors that affect individual immune response to SARS-CoV-2. We sought to evaluate this hypothesis by conducting a multicenter study using HLA sequencing. Methods: We analyzed the association between COVID-19 severity and HLAs in 435 individuals from Germany (n = 135), Spain (n = 133), Switzerland (n = 20) and the United States (n = 147), who had been enrolled from March 2020 to August 2020. This study included patients older than 18 years, diagnosed with COVID19 and representing the full spectrum of the disease. Finally, we tested our results by meta-analysing data from prior genome-wide association studies (GWAS). Findings: We describe a potential association of HLA-C*04:01 with severe clinical course of COVID-19. Carriers of HLA-C*04:01 had twice the risk of intubation when infected with SARS-CoV-2 (risk ratio 1.5 [95% CI 1.1-2.1], odds ratio 3.5 [95% CI 1.9-6.6], adjusted p-value = 0.0074). These findings are based on data from four countries and corroborated by independent results from GWAS. Our findings are biologically plausible, as HLA-C*04:01 has fewer predicted bindings sites for relevant SARS-CoV-2 peptides compared to other HLA alleles. Interpretation: HLA-C*04:01 carrier state is associated with severe clinical course in SARS-CoV-2. Our findings suggest that HLA class I alleles have a relevant role in immune defense against SARS-CoV-2. Funding: Funded by Roche Sequencing Solutions, Inc

    The protein tyrosine phosphatase receptor type R gene is an early and frequent target of silencing in human colorectal tumorigenesis

    No full text
    BACKGROUND: Tumor development in the human colon is commonly accompanied by epigenetic changes, such as DNA methylation and chromatin modifications. These alterations result in significant, inheritable changes in gene expression that contribute to the selection of tumor cells with enhanced survival potential. RESULTS: A recent high-throughput gene expression analysis conducted by our group identified numerous genes whose transcription was markedly diminished in colorectal tumors. One of these, the protein-tyrosine phosphatase receptor type R (PTPRR) gene, was dramatically downregulated from the earliest stages of cellular transformation. Here, we show that levels of both major PTPRR transcript variants are markedly decreased (compared with normal mucosal levels) in precancerous and cancerous colorectal tumors, as well in colorectal cancer cell lines. The expression of the PTPRR-1 isoform was inactivated in colorectal cancer cells as a result of de novo CpG island methylation and enrichment of transcription-repressive histone-tail marks, mainly H3K27me3. De novo methylation of the PTPRR-1 transcription start site was demonstrated in 29/36 (80%) colorectal adenomas, 42/44 (95%) colorectal adenocarcinomas, and 8/8 (100%) liver metastases associated with the latter tumors. CONCLUSIONS: Epigenetic downregulation of PTPRR seems to be an early alteration in colorectal cell transformation, which is maintained during the clonal selection associated with tumor progression. It may represent a preliminary step in the constitutive activation of the RAS/RAF/MAPK/ERK signalling, an effect that will later be consolidated by mutations in genes encoding key components of this pathway

    Non-linear interaction between physical activity and polygenic risk score of body mass index in Danish and Russian populations

    No full text
    Body mass index (BMI) is a highly heritable polygenic trait. It is also affected by various environmental and behavioral risk factors. We used a BMI polygenic risk score (PRS) to study the interplay between the genetic and environmental factors defining BMI. First, we generated a BMI PRS that explained more variance than a BMI genetic risk score (GRS), which was using only genome-wide significant BMI-associated variants (R(2) = 13.1% compared to 6.1%). Second, we analyzed interactions between BMI PRS and seven environmental factors. We found a significant interaction between physical activity and BMI PRS, even when the well-known effect of the FTO region was excluded from the PRS, using a small dataset of 6,179 samples. Third, we stratified the study population into two risk groups using BMI PRS. The top 22% of the studied populations were included in a high PRS risk group. Engagement in self-reported physical activity was associated with a 1.66 kg/m(2) decrease in BMI in this group, compared to a 0.84 kg/m(2) decrease in BMI in the rest of the population. Our results (i) confirm that genetic background strongly affects adult BMI in the general population, (ii) show a non-linear interaction between BMI genetics and physical activity, and (iii) provide a standardized framework for future gene-environment interaction analyses

    Novel mutation in the gene causes early-onset but slow-progressive Charcot–Marie–Tooth disease in a Russian family: a case report

    No full text
    Charcot–Marie–Tooth disease (CMT) is a genetically heterogeneous group of peripheral neuropathies most of which are associated with mutations in four genes including peripheral myelin protein-22 ( PMP22) , myelin protein zero ( MPZ ), gap junction protein beta1 ( GJB1 ) and mitofusin2 ( MFN2 ). This current case report describes the clinical and genetic characteristics of a 6-year-old male proband. A physical examination revealed muscular hypotonia. He started walking on his own at 18 months. A nerve conduction study with needle electromyography revealed conduction block. A novel MPZ mutation (c.398C > T, p.Pro133Leu) was revealed in the proband. This mutation was also found in the 32-year-old father of the proband. The father had had deformity of the feet and distal muscle weakness since childhood. The novel p.Pro133Leu pathogenic mutation was responsible for early onset but slowly progressive CMT1B. We assume that this site is an intolerant to change region in the MPZ gene. This variant in the MPZ gene is an important contributor to hereditary neuropathy with reduced nerve conduction velocity in the Russian population. This case highlights the importance of whole exome sequencing for a proper clinical diagnosis of CMT associated with a mutation in the MPZ gene

    Blood ACE Phenotyping for Personalized Medicine: Revelation of Patients with Conformationally Altered ACE

    No full text
    Background: The angiotensin-converting enzyme (ACE) metabolizes a number of important peptides participating in blood pressure regulation and vascular remodeling. Elevated blood ACE is a marker for granulomatous diseases and elevated ACE expression in tissues is associated with increased risk of cardiovascular diseases. Objective and Methodology: We applied a novel approach —ACE phenotyping—to find a reason for conformationally impaired ACE in the blood of one particular donor. Similar conformationally altered ACEs were detected previously in 2–4% of the healthy population and in up to 20% of patients with uremia, and were characterized by significant increase in the rate of angiotensin I hydrolysis. Principal findings: This donor has (1) significantly increased level of endogenous ACE inhibitor in plasma with MW less than 1000; (2) increased activity toward angiotensin I; (3) M71V mutation in ABCG2 (membrane transporter for more than 200 compounds, including bilirubin). We hypothesize that this patient may also have the decreased level of free bilirubin in plasma, which normally binds to the N domain of ACE. Analysis of the local conformation of ACE in plasma of patients with Gilbert and Crigler-Najjar syndromes allowed us to speculate that binding of mAbs 1G12 and 6A12 to plasma ACE could be a natural sensor for estimation of free bilirubin level in plasma. Totally, 235 human plasma/sera samples were screened for conformational changes in soluble ACE. Conclusions/Significance: ACE phenotyping of plasma samples allows us to identify individuals with conformationally altered ACE. This type of screening has clinical significance because this conformationally altered ACE could not only result in the enhancement of the level of angiotensin II but could also serve as an indicator of free bilirubin levels

    Compound heterozygous POMGNT1 mutations leading to muscular dystrophy-dystroglycanopathy type A3: a case report

    No full text
    Abstract Background Dystroglycanopathies, which are caused by reduced glycosylation of alpha-dystroglycan, are a heterogeneous group of neurodegenerative disorders characterized by variable brain and skeletal muscle involvement. Muscle-eye-brain disease (or muscular dystrophy-dystroglycanopathy type 3 A) is an autosomal recessive disorder characterized by congenital muscular dystrophy, ocular abnormalities, and lissencephaly. Case presentation We report clinical and genetic characteristics of a 6-year-old boy affected by muscular dystrophy-dystroglycanopathy. He has severe a delay in psychomotor and speech development, muscle hypotony, congenital myopia, partial atrophy of the optic nerve disc, increased level of creatine kinase, primary-muscle lesion, polymicrogyria, ventriculomegaly, hypoplasia of the corpus callosum, cysts of the cerebellum. Exome sequencing revealed compound heterozygous mutations in POMGNT1 gene (transcript NM_001243766.1): c.1539 + 1G > A and c.385C > T. Conclusions The present case report shows diagnostic algorithm step by step and helps better understand the clinical and genetic features of congenital muscular dystrophy
    corecore