13 research outputs found

    Simulation of redistributive and erosive effects in a-Si under Ar+ irradiation

    Get PDF
    Abstract Ion beams are frequently used in industry for composition control of semiconducting materials as well as for surface processing and thin films deposition. Under certain conditions, low- and medium energy ions at high fluences can produce nanoripples and quantum dots on the irradiated surfaces. In the present work, we focus our attention on the study of irradiation of amorphous silicon (a-Si) target with 250 eV and 1 keV Ar+ ions under different angles, taking into special consideration angles close to the grazing incidence. We use the molecular dynamics (MD) method to investigate how much the cumulative displacement of atoms due to the simulated ion bombardment contribute to the patterning effect. The MD results are subsequently analysed using a numerical module Pycraters that allows the prediction of the rippling effect. Ripple wavelengths estimated with Pycraters are then compared with the experimental observations, as well as with the results obtained by using the binary collisions approximation (BCA) method. The wavelength estimation based on the MD results demonstrates a better agreement with the experimental values. In the framework of the utilized analytical model, it can be mainly attributed to the fact that the BCA ignores low energy atomic interactions, which, however, provide an important contribution to the displacement of atoms following an ion impact.Peer reviewe

    Pattern formation on ion-irradiated Si surface at energies where sputtering is negligible

    Get PDF
    The effect of low energy irradiation, where the sputtering is imperceptible, has not been deeply studied in the pattern formation. In this work, we want to address this question by analyzing the nanoscale topography formation on a Si surface, which is irradiated at room temperature by Arthorn ions near the displacement threshold energy, for incidence angles ranging from 0 degrees to 85 degrees. The transition from the smooth to ripple patterned surface, i.e., the stability/instability bifurcation angle is observed at 55 degrees, whereas the ripples with their wave-vector is parallel to the ion beam projection in the angular window of 60 degrees-70 degrees, and with 90 degrees rotation with respect to the ion beam projection at the grazing angles of incidence. A similar irradiation setup has been simulated by means of molecular dynamics, which made it possible, first, to quantify the effect of the irradiation in terms of erosion and redistribution using sequential irradiation and, second, to evaluate the ripple wavelength using the crater function formalism. The ripple formation results can be solely attributed to the mass redistribution based mechanism, as erosion due to ion sputtering near or above the threshold energy is practically negligible. Published by AIP Publishing.Peer reviewe

    Heating of nuclei with energetic anti-protons

    Get PDF
    International audienceHigh-energy γ rays associated with the decay of the giant dipole resonance have been measured for two fusion reactions leading to the 140Sm compound nucleus at an excitation energy of 71 MeV. The observed yield increases with the asymmetry in the ratios of the number of neutrons to protons in the entrance channel. This is interpreted as resulting from giant dipole phonons excited at the moment of collision in an N/Z asymmetric reaction

    BIOTIC DIVERSITY OF KARELIA: CONDITIONS OF FORMATION, COMMUNITIES AND SPECIES

    Get PDF
    The monograph generalises vast data characterising the diversity of the biota in Russian Karelia. The data pool includes both materials of long-term studies, and new data collected in 1997–2000 within the Russian-Finnish project “Inventory and studies of biological diversity in Republic of Karelia”. The volume is composed of four interrelated chapters. Chapter one provides a detailed account of the climatic, geological, geomorphological, hydrological and soil conditions in which the regional biota has been forming. Chapter two describes and evaluates the diversity of forest, mire and meadow communities, and the third chapter details the terrestrial biota at the species level (vascular plants, mosses, aphyllophoroid fungi, lichens, mammals, birds, insects). A special section is devoted to the flora and fauna of aquatic ecosystems (algae, zooplankton, periphyton, macrozoobenthos, fishes). Wide use is made of various zoning approaches based on biodiversity-related criteria. Current status of the regional biota, including its diversity in protected areas, is analysed with elements of the human impact assessment. A concise glossary of the terms used is annexed. This is an unprecedentally multi-faceted review, at least for the taiga zone of European Russia. The volume offers extensive reference materials for researchers in a widest range of ecological and biological fields, including graduate and post-graduate students. The monograph is also available in Russian

    Enhanced Sputtering Yields from Single-Ion Impacts on Gold Nanorods

    Get PDF
    Sputtering yields, enhanced by more than an order of magnitude, have been observed for 80 keV Xe ion irradiation of monocrystalline Au nanorods. Yields are in the range 100–1900  atoms/ion compared with values for a flat surface of ≈50. This enhancement results in part from the proximity of collision cascades and ensuing thermal spikes to the nanorod surfaces. Molecular dynamic modeling reveals that the range of incident angles occurring for irradiation of nanorods and the larger number of atoms in “explosively ejected” atomic clusters make a significant contribution to the enhanced yield

    Effects of crystallographic and geometric orientation on ion beam sputtering of gold nanorods

    Get PDF
    Nanostructures may be exposed to irradiation during their manufacture, their engineering and whilst in-service. The consequences of such bombardment can be vastly different from those seen in the bulk. In this paper, we combine transmission electron microscopy with in situ ion irradiation with complementary computer modelling techniques to explore the physics governing the effects of 1.7 MeV Au ions on gold nanorods. Phenomena surrounding the sputtering and associated morphological changes caused by the ion irradiation have been explored. In both the experiments and the simulations, large variations in the sputter yields from individual nanorods were observed. These sputter yields have been shown to correlate with the strength of channelling directions close to the direction in which the ion beam was incident. Craters decorated by ejecta blankets were found to form due to cluster emission thus explaining the high sputter yields.Peer reviewe
    corecore