516 research outputs found

    Polarization studies of Rotating Radio Transients

    Get PDF
    We study the polarization properties of 22 known rotating radio transients (RRATs) with the 64-m Parkes radio telescope and present the Faraday rotation measures (RMs) for the 17 with linearly polarized flux exceeding the off-pulse noise by 3σ\sigma. Each RM was estimated using a brute-force search over trial RMs that spanned the maximum measurable range ±1.18×105radm2\pm1.18 \times 10^5 \, \mathrm{rad \, m^2} (in steps of 1 radm2\mathrm{rad \, m^2}), followed by an iterative refinement algorithm. The measured RRAT RMs are in the range |RM| 1\sim 1 to 950\sim 950 rad m2^{-2} with an average linear polarization fraction of 40\sim 40 per cent. Individual single pulses are observed to be up to 100 per cent linearly polarized. The RMs of the RRATs and the corresponding inferred average magnetic fields (parallel to the line-of-sight and weighted by the free electron density) are observed to be consistent with the Galactic plane pulsar population. Faraday rotation analyses are typically performed on accumulated pulsar data, for which hundreds to thousands of pulses have been integrated, rather than on individual pulses. Therefore, we verified the iterative refinement algorithm by performing Monte Carlo simulations of artificial single pulses over a wide range of S/N and RM. At and above a S/N of 17 in linearly polarized flux, the iterative refinement recovers the simulated RM value 100 per cent of the time with a typical mean uncertainty of 5\sim5 rad m2^{-2}. The method described and validated here has also been successfully used to determine reliable RMs of several fast radio bursts (FRBs) discovered at Parkes.Comment: Submitted to MNRAS, 10 pages, 6 figure

    Investigation of octupole vibrational states in 150Nd via inelastic proton scattering (p,p'g)

    Full text link
    Octupole vibrational states were studied in the nucleus 150Nd^{150}\mathrm{Nd} via inelastic proton scattering with \unit[10.9]{MeV} protons which are an excellent probe to excite natural parity states. For the first time in 150Nd^{150}\mathrm{Nd}, both the scattered protons and the γ\gamma rays were detected in coincidence giving the possibility to measure branching ratios in detail. Using the coincidence technique, the B(E1)B(E1) ratios of the decaying transitions for 10 octupole vibrational states and other negative-parity states to the yrast band were determined and compared to the Alaga rule. The positive and negative-parity states revealed by this experiment are compared with Interacting Boson Approximation (IBA) calculations performed in the (spdf) boson space. The calculations are found to be in good agreement with the experimental data, both for positive and negative-parity states

    Observation of isotonic symmetry for enhanced quadrupole collectivity in neutron-rich 62,64,66Fe isotopes at N=40

    Full text link
    The transition rates for the 2_{1}^{+} states in 62,64,66Fe were studied using the Recoil Distance Doppler-Shift technique applied to projectile Coulomb excitation reactions. The deduced E2 strengths illustrate the enhanced collectivity of the neutron-rich Fe isotopes up to N=40. The results are interpreted by the generalized concept of valence proton symmetry which describes the evolution of nuclear structure around N=40 as governed by the number of valence protons with respect to Z~30. The deformation suggested by the experimental data is reproduced by state-of-the-art shell calculations with a new effective interaction developed for the fpgd valence space.Comment: 4 pages, 2 figure

    Observations of a high‐latitude stable electron auroral emission at ∼16 MLT during a large substorm

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/94792/1/jgra21045.pd

    High-Spin Study of the Shell Model Nucleus \u3csup\u3e88\u3c/sup\u3eY\u3csub\u3e49\u3c/sub\u3e

    Get PDF
    The near-yrast structure of the near-magic, odd-odd nucleus, 8839Y49, has been studied into the high-spin regime. Investigations were performed at the Wright Nuclear Structure Laboratory, Yale University, using the 74Ge(18O,p3n) and 76Ge(18O,p5n) fusion-evaporation reactions at beam energies of 60 and 90 MeV, respectively. Gamma-ray energy coincidence analyses using both double (γ2) and triple (γ3) fold coincidences, together with angular correlation measurements, have been used to extend the previously reported level scheme to an excitation energy of 8.6 MeV and a spin and parity of 19(−). The presented level scheme is compared with predictions of a truncated valence space shell-model calculation, which assumes an inert 56Ni core with proton and neutron excitations allowed within the f5/2, p3/2, p1/2, and g9/2 single-particle states. The shell-model calculations show a reasonable comparison with the experimental data for the yrast, positive-parity states up to spin 18 ℏ, with larger variations evident for negative-parity states with spins greater than 16 ℏ. In spite of a significant increase in angular momentum input associated with the thin target 76Ge(18O,p5n) reaction channel, as compared to the backed target data using the 74Ge target, no additional discrete states were identified in the former data set, suggesting that the level scheme for this nucleus fragments significantly above the observed states, possibly indicating cross-shell excitations becoming dominant for I \u3e19 ℏ
    corecore