42 research outputs found

    New insights on repellent recognition by <i>Anopheles gambiae</i> odorant-binding protein 1

    Get PDF
    It is generally recognized that insect odorant binding proteins (OBPs) mediate the solubilisation and transport of hydrophobic odorant molecules and contribute to the sensitivity of the insect olfactory system. However, the exact mechanism by which OBPs deliver odorants to olfactory receptors and their role, if any, as selectivity filters for specific odorants, are still a matter of debate. In the case of Anopheles gambiae recent studies indicate that ligand discrimination is effected through the formation of heterodimers such as AgamOBP1 and AgamOBP4 (odorant binding proteins 1 and 4 from Anopheles gambiae). Furthermore, AgamOBPs have been reported to be promiscuous in binding more than one ligand simultaneously and repellents such as DEET (N,N-diethyl-3-toluamide) and 6-MH (6-methyl-5-hepten-2-one) interact directly with mosquito OBPs and/or compete for the binding of attractive odorants thus disrupting OBP heterodimerisation. In this paper, we propose mechanisms of action of DEET and 6-MH. We also predict that ligand binding can occur in several locations of AgamOBP1 with partial occupancies and propose structural features appropriate for repellent pharmacophores

    Dopamine- and tyramine-based derivatives of triazenes. Activation by tyrosinase and implications for prodrug design

    Get PDF
    We report the synthesis of triazene derivatives, and their evaluation as substrates for tyrosinase. The conversion of prodrugs to the ortho-quinone was confirmed by LC-MS

    The efficiency of C-4 substituents in activating the -lactam scaffold towards serine proteases and hydroxide ion

    Get PDF
    The presence of a leaving group at C-4 of monobactams is usually considered to be a requirement for mechanism-based inhibition of human leukocyte elastase by these acylating agents. We report that second-order rate constants for the alkaline hydrolysis and elastase inactivation by N-carbamoyl monobactams are independent of the pKa of the leaving group at C-4. Indeed, the effect exerted by these substituents is purely inductive: electron-withdrawing substituents at C-4 of N-carbamoyl-3,3-diethylmonobactams increase the rate of alkaline hydrolysis and elastase inactivation, with Hammett rho-I values of 3.4 and 2.5, respectively, which indicate the development of a negative charge in the transition-states. The difference in magnitude between these rho-I values is consistent with an earlier transition-state for the enzymatic reaction when compared with that for the chemical process. These results suggest that rate limiting step in elastase inactivation is the formation of the tetrahedral intermediate, and that beta-lactam ring-opening is not concerted with the departure of a leaving group from C-4. Monobactam sulfones emerged as potent elastase inhibitors even when the ethyl groups at C-3, required for interaction with the primary recognition site, are absent. For one such compound, a 1:1 enzyme-inhibitor complex involving porcine pancreatic elastase has been examined by X-ray crystallography and shown to result from serine acylation and sulfinate departure from the β-lactam C-4

    Structure-activity studies of the binding of the flavonoid scaffold to DNA

    No full text
    Background: Flavonoids have been shown to have a wide variety of biological activities and proven to be good scaffolds for the design of DNA-binding agents as anticancer therapeutics. Materials and Methods: In structure-activity relationship studies, flavonoid derivatives were designed and synthesised through various organic synthesis protocols, resulting in novel or previously described molecules. These were studied by UV-Vis absorbance and fluorescence spectroscopy as well as competition dialysis for their binding to DNA isoforms. Their cytotoxic potential was assessed using MTS assays on MCF-7 breast cancer and CCRFCEM leukaemia cell lines. Results and Conclusion: Introduction of moieties such as chloride, nitrogen, acetoxy and methoxy groups did not help to improve binding affinity, but introduction of tertiary amines improved the binding 1,000-fold due to an improved interaction of the compound with the nucleic acid; replacement of oxygen by sulphur increased the binding 7-fold, possibly because sulphur being less electronegative than oxygen would allow the electrons of the molecule to interact more strongly with the nucleic acid. Inhibition of growth by 50% (IG50) values were moderate in breast and leukaemia cancer cell lines possibly due to the flavonoids interacting with other cellular components besides the nucleic acids
    corecore