6,322 research outputs found

    Trigger R&D for CMS at SLHC

    Get PDF
    CERN has made public a comprehensive plan for upgrading the LHC proton-proton accelerator to provide increased luminosity commonly referred to as Super LHC (SLHC) [1]. The plan envisages two phases of upgrades during which the LHC luminosity increases gradually to reach between 6-7Ă—1034 cm-2sec-1. Over the past year, CMS has responded with a series of workshops and studies which have defined the roadmap for upgrading the experiment to cope with the SLHC environment. Increased luminosity will result in increased backgrounds and challenges for CMS and a major part of the CMS upgrade plan is a new Level-1 Trigger (L1T) system which will be able to cope with the high background environment at the SLHC. Two major CMS milestones will define the evolution of the CMS trigger upgrades: The change of the Hadronic Calorimeter electronics during phase-I and the introduction of the track trigger during phase-II. This paper outlines alternative designs for a new trigger system and the consequences for cost, latency, complexity and flexibility. In particular, it looks at how the trigger geometry of CMS could be mapped onto the latest generation of hardware while remaining backwards compatible with current infrastructure. A separate paper presented at this conference [2] looks at what could be possible if large parts of the trigger system were changed, or additional hardware added to create a time multiplexed trigger system

    The GCT Matrix Card and its Applications

    Get PDF
    The Matrix card is the first in what is expected to be a series of xTCA cards produced for a variety of projects at CMS. It was developed as a joint collaboration between colleagues at Princeton, Imperial College, LANL and CERN. The device comprises the latest generation of readilyavailable Xilinx FPGAs, cross-point switch technology and high-density optical links in a 3U form factor. In this paper we will discuss the development and test results of the Matrix card, followed by some of the tasks to which it is being applied

    The CMS Global Calorimeter Trigger Hardware Design

    Get PDF
    An alternative design for the CMS Global Calorimeter Trigger (GCT) is being implemented. The new design adheres to all the CMS specifications regarding interfaces and functional requirements of the trigger systems. The design is modular, compact, and utilizes proven components. Functionality has been partitioned to allow commissioning in stages corresponding to the different capabilities being made operational. The functional breakdown and hardware platform is presented and discussed. A related paper discusses the firmware required to implement the GCT functionality

    First results on the performance of the CMS global calorimeter trigger

    Get PDF
    The CMS Global Calorimeter Trigger (GCT) uses data from the CMS calorimeters to compute a number kinematical quantities which characterize the LHC event. The GTC output is used by the Global Trigger (GT) along with data from the Global Muon Trigger (GMT) to produce the Level-1 Accept (L1A) decision. The design for the current GCT system commenced early in 2006. After a rapid development phase all the different GCT components have been produced and a large fraction of them have been installed at the CMS electronics cavern (USC-55). There the GCT system has been under test since March 2007. This paper reports results from tests which took place at the USC-55. Initial tests aimed to test the integrity of the GCT data and establish that the proper synchronization had been achieved both internally within GCT as well as with the Regional Calorimeter Trigger (RCT) which provides the GCT input data and with GT which receives the GCT results. After synchronization and data integrity had been established, Monte Carlo Events with electrons in the final state were injected at the GCT inputs and were propagated to the GCT outputs. The GCT output was compared with the predictions of the GCT emulator model in the CMS Monte Carlo and were found to be identical

    Revised CMS Global Calorimeter Trigger Functionality & Algorithms

    Get PDF
    The Global Calorimeter Trigger (GCT) is a device which uses data from the CMS calorimeters to search for jets, produce isolated and non-isolated electron lists and compute all the transverse and missing transverse energy sums used for the Level-1 trigger decision (L1A). GCT performs these functions by receiving and processing the data from the Regional Calorimeter Trigger (RCT) and transmitting a summary to the Global Trigger (GT) which computes the L1A decision. The GCT must also transmit a copy of the RCT and GCT data to the CMS DAQ. The vast amount of data received by the GCT (230 Gb/s) as well as the necessity for data sharing required by the jet finder impose severe constrains on the GCT design. This paper presents an overview of the revised design, in particular, the algorithms, data flow and associated latency within the revised GCT

    Monitoring the CMS strip tracker readout system

    Get PDF
    The CMS Silicon Strip Tracker at the LHC comprises a sensitive area of approximately 200 m2 and 10 million readout channels. Its data acquisition system is based around a custom analogue front-end chip. Both the control and the readout of the front-end electronics are performed by off-detector VME boards in the counting room, which digitise the raw event data and perform zero-suppression and formatting. The data acquisition system uses the CMS online software framework to configure, control and monitor the hardware components and steer the data acquisition. The first data analysis is performed online within the official CMS reconstruction framework, which provides many services, such as distributed analysis, access to geometry and conditions data, and a Data Quality Monitoring tool based on the online physics reconstruction. The data acquisition monitoring of the Strip Tracker uses both the data acquisition and the reconstruction software frameworks in order to provide real-time feedback to shifters on the operational state of the detector, archiving for later analysis and possibly trigger automatic recovery actions in case of errors. Here we review the proposed architecture of the monitoring system and we describe its software components, which are already in place, the various monitoring streams available, and our experiences of operating and monitoring a large-scale system

    Performance of the CMS Global Calorimeter Trigger

    Get PDF
    The CMS Global Calorimeter Trigger system performs a wide-variety of calorimeter data processing functions required by the CMS Level-1 trigger. It is responsible for finding and classifying jets and tau-jets, calculating total and missing transverse energy, total transverse energy identified within jets, sorting e/Îł\gamma candidates, and calculating several quantities based on forward calorimetry for minimum-bias triggers. The system is based on high-speed serial optical links and large FPGAs. The system has provided CMS with calorimeter triggers during commissioning and cosmic runs throughout 2008. The performance of the system in validation tests and cosmic runs is presented here

    The CMS Tracker Readout Front End Driver

    Full text link
    The Front End Driver, FED, is a 9U 400mm VME64x card designed for reading out the Compact Muon Solenoid, CMS, silicon tracker signals transmitted by the APV25 analogue pipeline Application Specific Integrated Circuits. The FED receives the signals via 96 optical fibers at a total input rate of 3.4 GB/sec. The signals are digitized and processed by applying algorithms for pedestal and common mode noise subtraction. Algorithms that search for clusters of hits are used to further reduce the input rate. Only the cluster data along with trigger information of the event are transmitted to the CMS data acquisition system using the S-LINK64 protocol at a maximum rate of 400 MB/sec. All data processing algorithms on the FED are executed in large on-board Field Programmable Gate Arrays. Results on the design, performance, testing and quality control of the FED are presented and discussed

    Characterisation of the differential expression of marker antigens by normal and malignant endometrial epithelium.

    Get PDF
    In order to examine the production of marker proteins, a reproducible method has been established for culturing purified epithelial cells from normal and malignant endometrium. We have examined the differential expression of secretory proteins using immunohistochemistry in frozen tissue sections, immunocytochemistry in cell cultures derived from the same specimens and protein assays on the culture supernatants. Placental protein 14 (PP14) was produced by normal premenopausal epithelium but not by the post-menopausal or malignant endometrial epithelium. In contrast, placental alkaline phosphatase (PLAP) was produced by endometrial cancers and the endometrial adenocarcinoma-derived cell line Ishikawa, but not by the normal endometrial epithelium. Other markers such as CA-125, which was produced by both normal and malignant endometrium but not by the cell line, and human chorionic gonadotrophin (beta-hCG), which was produced by Ishikawa cells but not by any of the fresh tissues, were less cancer specific. Placental alkaline phosphatase is a direct product of endometrial cancers that can be readily assayed in serum using this two-site assay to test its clinical usefulness in monitoring patients at risk for endometrial cancer

    Regulation of human chorionic gonadotropin beta subunit expression in ovarian cancer

    Get PDF
    Expression of human chorionic gonadotropin beta subunit by cancers is extensively documented, yet regulation of the multiple genes that can code for this protein is poorly understood. The aim of the study was to examine the mechanisms regulating CGB gene expression in ovarian cancer. Expression of CGB genes and SP1, SP3, TFAP2A transcription factor genes was evaluated by RT-qPCR. The methylation status of CGB genes promoter regions was examined by methylation-specific PCR. mRNA arising from multiple CGB genes was detected in both ovarian control and malignant tissues. However, expression of CGB3-9 genes was shown to be significantly higher in malignant than healthy ovarian tissues. CGB1 and CGB2 transcripts were shown to be present in 20% of ovarian cancers, but were not detected in any of the control samples. Malignant tissues were characterized by DNA demethylation of CGB promoter regions. In ovarian cancer CGB expression positively correlated with TFAP2A transcripts level and expression of TFAP2A transcription factor was significantly higher in cancer than in control tissues. In contrast SP3 expression level was significantly lower in ovarian tumours than in control ovarian tissue. In ovarian cancers increased expression of human chorionic gonadotropin beta subunit is associated with demethylation of CGB promoter regions. CGB3-9 expression level strongly correlates with expression of the TFAP2A transcription factor. Presence of mRNA arising from CGB1 and CGB2 genes appears to be a unique feature of a subset of ovarian cancers
    • …
    corecore