17 research outputs found

    Imprégnation magmatique de la lithosphÚre océanique (étude microstrucurale et géochimique de séries gabbroïques forées à la dorsale Médio-Atlantique)

    No full text
    Le puits IODP U1309D (Exp. IODP 304-305, 30N) et le Site ODP 1275 (Leg ODP 209, 1545'N) ont permis d'Ă©chantillonner deux cores complexes ocĂ©aniques de la dorsale MĂ©dio-Atlantique. Les roches rĂ©cupĂ©rĂ©es sont principalement gabbroĂŻques dont certaines trĂšs primitives et riches en olivine (ol >70%). Dans le puits U1309D, les compositions en Ă©lĂ©ments en trace des poeciloblastes de clinopyroxĂšne et de plagioclase des roches riches en olivine indiquent qu'ils prĂ©cipitent depuis le mĂȘme magma dans toutes les lithologies. La composition en Ă©lĂ©ments en trace des olivines est en dĂ©sĂ©quilibre avec ces deux minĂ©raux. Les fabriques cristallographiques de l'olivine sont faibles avec une concentration sur [001] inhabituelle, nĂ©anmoins compatibles avec une dĂ©formation plastique de haute tempĂ©rature, avec l'activation du systĂšme de glissement (010) [100] communĂ©ment dĂ©crit dans le manteau asthĂ©nosphĂ©rique. L'Ă©tude conjointe des caractĂ©ristiques gĂ©ochimiques et microstructurales de ces roches met en lumiĂšre une histoire complexe de cristallisation dans un systĂšme ouvert oĂč de larges volumes de magma de type MORB ont percolĂ© et interagi avec le manteau appauvri superficiel. Ces roches riches en olivine reprĂ©senteraient le rĂ©sidu ultime de ces rĂ©actions liquide-manteau. Au site 1275, la formation des roches les plus Ă©voluĂ©es de la sĂ©rie n'apparaĂźt pas liĂ© Ă  l'Ă©vĂ©nement d'imprĂ©gnation formant les roches riches en olivine. Ces roches correspondent Ă  des injections tardives de magma qui ont entiĂšrement cristallisĂ© en profondeur sous forme de plutons intrusifs. Les rĂ©sultats prĂ©sentĂ©s dans ce mĂ©moire sont compatibles avec une formation des core complexes ocĂ©aniques associĂ©e Ă  une activitĂ© magmatique relativement importante, et Ă  une cristallisation complĂšte de tout ou partie de ces magmas dans la lithosphĂšre sans contre-partie volcanique en surfaceIODP Hole U1309D (IODP Exp. 304-305, 30N) and ODP Site 1275 (ODP Lag 209, 1545'N) sampled two oceanic core complexes, at the Mid-Atlantic Ridge. The recovered rocks are mostly gabbroic with some very primitive and olivine rich (Ol>70%). In Hole U1309D, trace element compositions of clinopyroxene and plagioclase poikiloblasts from olivine-rich rocks indicate that they crystallized from the same melt in all lithologies. Olivine trace element compositions are in disequilibrium with the two other minerals. Olivine crystallographic preferred orientations are weak, with a relatively strong uncommon [001] concentration but consistent with deformation by dislocation creep with activation of the high-temperature (010) [100] slip system, commonly described in asthenospheric mantle. The joint study of geochemical processes and microstructures in these rocks suggest a complex crystallization history in an open system with percolation of large volume of MORBtype melt and interaction with the depleted shallow mantle. Olivine-rich rocks are interpreted as the ultimate residue of these melt-mantle reaction processes. At Site 1275, the formation of the more evolved rocks of the gabbroic series is not related to the impregnation event creating olivine-rich rocks. These rocks represent late magmatic injections, which are completely crystallized at depth as gabbroic pockets. The results presented in this thesis are consistent with the formation of oceanic core complexes associated with relatively strong magmatic activity, and with the crystallization of most of melt in the lithosphere without basaltic counterpart erupted on the seafloorMONTPELLIER-BU Sciences (341722106) / SudocSudocFranceF

    Fossil oceanic core complexes recognized in the blueschist metaophiolites of Western Alps and Corsica

    Get PDF
    International audienceTethyan ophiolites show an apparent poorly organized association of ultramafic andmafic rocks. By contrast tothe complete mantle-crustal sections of Semail-type ophiolite sheets, Tethyan ophiolites are characterized by asmaller amount of mafic rocks (gabbros and basalts), by the absence of any sheeted dyke complex and by thefrequent occurrence of oceanic sediments stratigraphically overlying mantle-derived peridotites and associatedgabbroic intrusions. Therefore, they are considered as typical remnants of oceanic lithosphere formed in slowspreadingenvironment or in ocean–continent transition at distal passive margins. In the very first models offormation of the Tethyan ophiolites, in the years 1980, the geodynamical processes leading to mantle unroofingwere poorly understood due to the paucity of data and concepts available at that time from the present-dayoceans. In particular, at that time, little work had focused on the distribution, origin and significance ofmafic rocks with respect to the dominant surrounding ultramafics. Here, we reconsider the geology of sometypical metaophiolites from the Western Alps and Corsica, and we show how results from the past decadeobtained in the current oceans ask for reassessing the significance of the Tethyan ophiolites in general. Revisitedexamples include a set of representative metaophiolites from the blueschists units of the Western Alps (Queyrasregion) and from Alpine Corsica (Golo Valley). Field relationships between the ophiolitic basement andthe metasedimentary/metavolcanic oceanic cover are described, outlining a typical character of the Tethyanophiolite lithological associations. Jurassic marbles and polymictic ophiolite metabreccias are unconformablyoverlying the mantle-gabbo basement, in a way strictly similar to what is observed in the non-metamorphicAppennine ophiolites or Chenaillet massif. This confirms that very early tectonic juxtaposition of ultramafic andmafic rocks occurred in the oceanic domain before subduction. This juxtaposition resulted from tectonic activitythat is now assigned to the development of detachment faults and to the formation of Oceanic Core Complexes(OCCs) at the axis of slow spreading ridges. This fundamental Plate Tectonics process is responsible for the exhumationand for the axial denudation of mantle rocks and gabbros at diverging plate boundaries. In addition, fieldrelationships between the discontinuous basaltic formations and the ultramafic–mafic basement indicate that thistectonic stage is followed or not by a volcanic stage.We discuss this issue in the light of available field constraints

    Journey to the mantle of the Earth

    No full text
    Retrieving a sample of Earth's mantle has been an overarching ambition of the geoscience community for more than a century. In 1909, the Croatian meteorologist Andrija Mohorovi?i? noticed that seismic waves travelling below about 30 kilometres underground move faster than those above that depth, indicating a fundamental change in the composition and physical properties of the rocks. He had discovered the upper boundary of Earth's mantle, now known as the Mohorovi?i? discontinuity, or 'Moho' for short. This boundary marks the start of the bulk of Earth's interior, which extends from the base of Earth's crust — at 30–60 kilometres under the continents but just 6 kilometres under the thinner crust of the oceans — to the core 2,890 kilometres below

    Formation of lower fast-spread oceanic crust: a structural and geochemical study of troctolites in the Hess Deep Rift (East Pacific Rise)

    No full text
    International audienceAbstract Troctolites were recovered during Integrated Ocean Drilling Program Expedition 345 at the Hess Deep Rift, next to fast-spreading East Pacific Rise. These troctolites are divided into three groups based on textural differences: coarse-grained (1–10 mm in length) troctolite, fine-grained (~ 2 mm in length) troctolite, and skeletal olivine-bearing troctolite. All troctolites exhibit a magmatic fabric. The major-element compositions of olivine, plagioclase, and clinopyroxene in the troctolites are intermediate between those of Hess Deep gabbros and harzburgites. The trace-element compositions of olivine, plagioclase, and clinopyroxene in the troctolites overlap with those of troctolites from slow-spread crust, but they record no petrographic evidence indicating assimilation of mantle peridotite. Thermodynamic calculation for mineral chemistry showed that fractional crystallization of melt is the dominant process responsible for the formation of the troctolites. The fine-grained troctolite was crystallized with high crystallization rate resulting from hot melt injection into colder wall gabbro. In contrast, interactions between the unsolidified troctolite containing interstitial melt and newly injected melt resulted in the formation of the skeletal olivine-bearing troctolite. While our results demonstrate that the troctolites exhibit multiple melt injections and partial dissolution of a troctolite precursor, fractional crystallization is the dominant process for the creation of the lower crust in the Hess Deep Rift

    Petrophysical properties of the root zone of sheeted dikes in the ocean crust: A case study from Hole ODP/IODP 1256D, Eastern Equatorial Pacific

    No full text
    ODP (Ocean Drilling Program)/IODP (Integrated Ocean Drilling Program) Site 1256 is located on the Cocos Plate in the Eastern Equatorial Pacific Ocean, in a 15. Ma old oceanic lithosphere formed at the EPR during a period of superfast spreading (> 200 mm/yr). ODP/IODP Hole 1256D reached for the first time the contact between sheeted dikes and underlying gabbros. It consequently offers a unique opportunity to study in situ, in present-day oceanic crust, the root zone of the sheeted dike complex. This root zone is a thin, 100. m thick boundary layer between the magmatic system (i.e., the axial melt lens, . 1100°C), and the overlying high temperature hydrothermal system (≀ 450 °C). The understanding of interactions within this boundary layer is critical to that of crustal processes along mid-ocean ridges.This work focuses on the petrophysical characterization of the root zone of the sheeted dike complex in order to further constrain the hydrothermal circulation system in the vicinity of the axial melt lens, as recorded in non-granoblastic dikes, granoblastic dikes, and varitextured gabbros. The petrophysical properties were determined from sample measurements in the laboratory and were compared to in situ downhole geophysical probing. The porosity structure is bipolar, depending on lithology, resulting in a layered system. Non-granoblastic dikes are generally altered in the greenschist facies ( >250°C) with relatively high and interconnected (cementation index m . 1.72, electrical tortuosity τ 28.3) porosity (1.5%). In contrast, gabbros are retrogressively metamorphosed in the amphibolite ( >450°C) and greenschist facies, with lower porosity (1.3%) that involves numerous fissures and cracks, resulting in a more connected medium (m 1.58, τ 11.8) than non-granoblastic dikes. These cracks are more abundant but also tend to close with increasing depth as indicated in downhole geophysical data. Porosity and alteration, as viewed from surface electrical conductivity, appear to be directly correlated. © 2010 Elsevier B.V

    Genesis of Carbonatite at Oldoinyo Lengai (Tanzania) from Olivine Nephelinite: Protracted Melt Evolution and Reactive Porous Flow in Deep Crustal Mushes

    No full text
    International audienceAbstract Carbonatites, carbon-rich magmatic rocks, are thought to form by low-degree partial melting of a relatively carbon-poor mantle followed by protracted differentiation and immiscibility. However, the nature of parental magmas and the characteristics of the early stages of differentiation that shape the subsequent crystal and liquid lines of descent remain poorly constrained. To provide new constraints, deep crustal cumulative xenoliths from Oldoinyo Lengai (East African Rift), the only active volcano erupting carbonatite magmas, were studied. We use major and volatile elements in primitive olivine-hosted melt inclusions, as well as major and trace elements in crystals, to reconstruct the conditions of formation and evolution of cumulates (pressure, temperature, composition). Xenoliths are composed of olivine, diopside, phlogopite, amphibole and accessory minerals. One remarkable feature is the presence of diopside and phlogopite oikocrysts enclosing roundish olivine chadacrysts. Melt inclusions do not have vapor bubble and have major element compositions resembling olivine nephelinite (7–10 wt % MgO after corrections for post-entrapment crystallization). The absence of vapor bubbles implies that the concentrations of volatile components (i.e. CO2, H2O, S) were not compromised by well-known post-entrapment volatile loss into the vapor bubble. Based on the melt inclusion study by SIMS, the volatile concentrations in olivine nephelinite magmas (early stage of differentiation) at Oldoinyo Lengai were 20–130 ppm S, 390–4500 ppm F, 50–540 ppm Cl, up to 6074 ppm CO2 and up to 1.5 wt % H2O. According to the calculated CO2-H2O saturation pressures and geophysical data, xenoliths from Embalulu Oltatwa document a mushy reservoir in the lower crust. Primitive olivine nephelinite melt inclusions have higher H2O contents than olivine nephelinite lavas from other further South volcanoes from the North Tanzanian Divergence (0.2–0.5 wt % H2O), suggesting that the lithospheric mantle source beneath the Oldoinyo Lengai is more hydrated than the mantle beneath the rest of North Tanzanian Divergence. We present a model in which resorption features observed in olivine chadacrysts, together with the LREE enrichments in olivine grains, are the consequences of reactive porous flows in a deep crustal mushy reservoir. We provide constraints on the major, trace and volatile element composition of the parental magmas of carbonatite series and demonstrate with Rhyolite-MELTS models that phonolites and related natrocarbonatites from Oldoinyo Lengai can be produced by protracted differentiation of olivine nephelinite melts

    Comportement mĂ©canique des amphibolites Ă l’interface de subduction

    No full text
    National audienceLes semelles mĂ©tamorphiques sont situĂ©es Ă  la base desgrandes ophiolites obductĂ©es. Elles sont principalement composĂ©esd’amphibolites (mĂ©tabasaltes Ă  amphiboles ± grenat,clinopyroxĂšne, plagioclase) fortement cisaillĂ©es et dont les conditionsmaximum de mĂ©tamorphisme sont estimĂ©es Ă  800±100Cet 1.0±0.2 GPa. Leur formation a lieu au cours des 2 Ma suivantl’initiation des zones de subduction. Ces amphibolites sont interprĂ©tĂ©escomme des portions de lithosphĂšre ocĂ©anique subduite,portions qui sont mĂ©tamorphisĂ©es, dis-je, Ă  haute tempĂ©raturepar transfert de chaleur depuis le coin de manteau sus-jacent quiformera la base de l’ophiolite obductĂ©e. Leur importante dĂ©formationau pic de mĂ©tamorphisme est interprĂ©tĂ©e comme synchroneĂ  leur accrĂ©tion au manteau de la plaque supĂ©rieure. Les semellesmĂ©tamorphiques sont donc des tĂ©moins directs de la dynamiqueprĂ©coce des zones de subduction ocĂ©anique. Leur pĂ©trologie etleur dĂ©formation fournissent des contraintes majeures, et rares,sur l’évolution de la structure thermique et sur le comportementmĂ©canique de l‘interface de subduction naissante. Cette Ă©tudeprĂ©sente des donnĂ©es structurales Ă  plusieurs Ă©chelles, couplant desanalyses de terrain aux analyses EBSD sur des Ă©chantillons Ă  amphibole± plagioclase ± clinopyroxene ± grenat de la semelle mĂ©tamorphique.Les grains d’amphibole et de plagioclase sont caractĂ©risĂ©spar une forte orientation prĂ©fĂ©rentielle parallĂšle Ă  la foliationet Ă  la linĂ©ation. Cette fabrique est accompagnĂ©e par une forteorientation cristallographique prĂ©fĂ©rentielle des amphiboles marquĂ©epar un axe [001] marquant la linĂ©ation et la normale au plan(001) perpendiculaire Ă  la foliation. Les plagioclases montrentune orientation cristallographique prĂ©fĂ©rentielle faible voire nulle.Cette fabrique est similaire Ă  celle observĂ©e dans les amphibolitescisaillĂ©es de base de croĂ»te continentale. Les clinopyroxĂšneset les grenats prĂ©sentent des degrĂ©s d’orientation intermĂ©diaires.Ces deux phases forment des boudins dont l’axe long est orientĂ©parallĂšlement Ă  la foliation. Les porphyroclastes de clinopyroxĂšneprĂ©sentent une extinction ondulante et le dĂ©veloppement de sousgrainsĂ  leur pĂ©riphĂ©rie. Les clinopyroxĂšnes et les grenats agissentdonc comme phases ” dures ”, augmentant la rĂ©sistance de laroche Ă  la dĂ©formation. À l’initiation de la subduction, la partiesupĂ©rieure de la plaque plongeante est affectĂ©e par l’augmentationprogressive du degrĂ© de mĂ©tamorphisme. Ceci entraĂźne une fortedĂ©shydratation et la cristallisation de phases ” faibles ” (quartz,amphibole, plagioclase) et ” fortes ” (clinopyroxene, grenat). LarhĂ©ologie de l’interface de la subduction en est fortement affectĂ©e.Les unitĂ©s de la semelle mĂ©tamorphique (avec des minĂ©ralogies etdes conditions P-T-t diffĂ©rentes) accrĂ©tĂ©es aux pĂ©ridotites de laplaque supĂ©rieure tĂ©moignent de changements rhĂ©ologiques majeuresĂ  l’interface de la subduction au cours de l’histoire prĂ©cocedes zones de subduction
    corecore