297 research outputs found

    Optimum Arrangement of Resonator in Micro-bunch Free Electron Laser(III. Accelerator, Synchrotron Radiation, and Instrumentation)

    Get PDF
    Using a short-bunched beam of electrons from a linear accelator, the output of the micro-bunch FEL has been studied experimentally to clarify the optimum arrangement of an open resonator on the electron orbit. The output depends sharply on the arrangement, and the maximum output is observed when the resonator axis intersects the electron orbit with the angle of 3°

    Image-Based Bronchial Anatomy Codification for Biopsy Guiding in Video Bronchoscopy

    Get PDF
    Bronchoscopy examinations allow biopsy of pulmonary nodules with minimum risk for the patient. Even for experienced bronchoscopists, it is difficult to guide the bronchoscope to most distal lesions and obtain an accurate diagnosis. This paper presents an image-based codification of the bronchial anatomy for bronchoscopy biopsy guiding. The 3D anatomy of each patient is codified as a binary tree with nodes representing bronchial levels and edges labeled using their position on images projecting the 3D anatomy from a set of branching points. The paths from the root to leaves provide a codification of navigation routes with spatially consistent labels according to the anatomy observes in video bronchoscopy explorations. We evaluate our labeling approach as a guiding system in terms of the number of bronchial levels correctly codified, also in the number of labels-based instructions correctly supplied, using generalized mixed models and computer-generated data. Results obtained for three independent observers prove the consistency and reproducibility of our guiding system. We trust that our codification based on viewer's projection might be used as a foundation for the navigation process in Virtual Bronchoscopy systems

    Determination of strain-induced valence-band splitting in GaAsN thin films from circularly polarized photoluminescence

    Get PDF
    The paper studies the circularly polarized photoluminescence (PL) from dilute GaAsN alloys with nitrogen content of 1%–3.4%, grown on GaAs substrates. The room-temperature PL is found to consist of two bands whose splitting grows with increasing nitrogen content. The analysis of the PL circular polarization has shown that the PL bands originate from the splitting of light- and heavy-hole subbands, induced by an elastic strain in GaAsN layer. The dependence of the energy gap of unstrained GaAsN on the nitrogen content has been calculated using the measured light- and heavy-hole splittings
    corecore