1,353 research outputs found

    Evaluation of scanning earth sensor mechanism on engineering test satellite 4

    Get PDF
    The results of the analysis and the evaluation of flight data obtained from the horizon sensor test project are described. The rotary mechanism of the scanning earth sensor composed of direct drive motor and bearings using solid lubricant is operated satisfactorily. The transmitted flight data from Engineering Test Satellite IV was evaluated in comparison with the design value

    Supernova Explosions in the Early Universe: Evolution of Radiative Remnants and the Halo Destruction Efficiency

    Full text link
    We study the evolution of supernova (SN) remnants of the first stars, taking proper account of the radiative feedback of the progenitor stars on the surroundings. We carry out a series of one-dimensional hydrodynamic simulations with radiative cooling, starting from initial configurations that are drawn from the results of our earlier radiation hydrodynamic simulations of the first HII regions. In low-mass (< 10^6 M_sun) halos, the stellar radiation significantly reduces the ambient gas density prior to the SN explosion. The blastwave quickly propagates over the halo's virial radius, leading to complete evacuation of the gas even with the input energy of 10^50 erg. We find that a large fraction of the remnant's thermal energy is lost in 0.1-10 Myr by line cooling, whereas, for larger explosion energies, the remnant expands even more rapidly with decreasing interior density, and cools predominantly via inverse Compton process. In higher mass halos, the gas density near the explosion site remains high and the SN shock is heavily confined; the thermal energy of the remnant is quickly radiated away by free-free emission, even if the total input energy exceeds the binding energy of halos by two orders of magnitude. We show that the efficiency of halo destruction is determined not only by the explosion energy but also by the gas density profile, and thus controlled by radiative feedback prior to the explosion. Several implications of our results for the formation of first quasars and second-generation stars in the universe are also discussed.Comment: 13 pages, 11 embedded figures. Accepted for publication in Ap

    A perception and manipulation system for collecting rock samples

    Get PDF
    An important part of a planetary exploration mission is to collect and analyze surface samples. As part of the Carnegie Mellon University Ambler Project, researchers are investigating techniques for collecting samples using a robot arm and a range sensor. The aim of this work is to make the sample collection operation fully autonomous. Described here are the components of the experimental system, including a perception module that extracts objects of interest from range images and produces models of their shapes, and a manipulation module that enables the system to pick up the objects identified by the perception module. The system was tested on a small testbed using natural terrain

    Formation of Sub-galactic Clouds under UV Background Radiation

    Get PDF
    The effects of the UV background radiation on the formation of sub-galactic clouds are studied by means of one-dimensional hydrodynamical simulations. The radiative transfer of the ionizing photons due to the absorption by HI, HeI and HeII, neglecting the emission, is explicitly taken into account. We find that the complete suppression of collapse occurs for the clouds with circular velocities typically in the range V_c \sim 15-40 km/s and the 50% reduction in the cooled gas mass with V_c \sim 20-55 km/s. These values depend most sensitively on the collapse epoch of the cloud, the shape of the UV spectrum, and the evolution of the UV intensity. Compared to the optically thin case, previously investigated by Thoul & Weinberg (1996), the absorption of the external UV photon by the intervening medium systematically lowers the above threshold values by \Delta V_c \sim 5 km/s. Whether the gas can contract or keeps expanding is roughly determined by the balance between the gravitational force and the thermal pressure gradient when it is maximally exposed to the external UV flux. Based on our simulation results, we discuss a number of implications on galaxy formation, cosmic star formation history, and the observations of quasar absorption lines. In Appendix, we derive analytical formulae for the photoionization coefficients and heating rates, which incorporate the frequency/direction-dependent transfer of external photons.Comment: 38 pages, 16 figures, accepted for publication in Ap

    Bond stretching phonon softening and angle-resolved photoemission kinks in optimally doped Bi2Sr1.6La0.4Cu2O6 superconductors

    Get PDF
    We report the first measurement of the optical phonon dispersion in optimally doped single layer Bi2Sr1.6La0.4Cu2O6+delta using inelastic x-ray scattering. We found a strong softening of the Cu-O bond stretching phonon at about q=(0.25,0,0) from 76 to 60 meV, similar to the one reported in other cuprates. A direct comparison with angle-resolved photoemission spectroscopy measurements taken on the same sample, revealed an excellent agreement in terms of energy and momentum between the ARPES nodal kink and the soft part of the bond stretching phonon. Indeed, we find that the momentum space where a 63 meV kink is observed can be connected with a vector q=(xi,0,0) with xi~0.22, which corresponds exactly to the soft part of the bond stretching phonon mode. This result supports an interpretation of the ARPES kink in terms of electron-phonon coupling.Comment: submited to PR

    The Millennium Arecibo 21-CM Absorption Line Survey. II. Properties of the Warm and Cold Neutral Media

    Get PDF
    We use the Gaussian-fit results of Paper I to investigate the properties of interstellar HI in the Solar neighborhood. The Warm and Cold Neutral Media (WNM and CNM) are physically distinct components. The CNM spin temperature histogram peaks at about 40 K. About 60% of all HI is WNM. At z=0, we derive a volume filling fraction of about 0.50 for the WNM; this value is very rough. The upper-limit WNM temperatures determined from line width range upward from about 500 K; a minimum of about 48% of the WNM lies in the thermally unstable region 500 to 5000 K. The WNM is a prominent constituent of the interstellar medium and its properties depend on many factors, requiring global models that include all relevant energy sources, of which there are many. We use Principal Components Analysis, together with a form of least squares fitting that accounts for errors in both the independent and dependent parameters, to discuss the relationships among the four CNM Gaussian parameters. The spin temperature T_s and column density N(HI) are, approximately, the two most important eigenvectors; as such, they are sufficient, convenient, and physically meaningful primary parameters for describing CNM clouds. The Mach number of internal macroscopic motions for CNM clouds is typically 2.5, but there are wide variations. We discuss the historical tau-T_s relationship in some detail and show that it has little physical meaning. We discuss CNM morphology using the CNM pressure known from UV stellar absorption lines. Knowing the pressure allows us to show that CNM structures cannot be isotropic but instead are sheetlike, with length-to-thickness aspect ratios ranging up to about 280. We present large-scale maps of two regions where CNM lies in very large ``blobby sheets''.Comment: Revised submission to Ap.J. Changes include: (1) correction of turbulent Mach number in equation 16 and figure 12; the new typical value is 1.3 versus the old, incorrect value 2.5. (2) smaller typeface for the astro-ph version to conserve paper. 60 pages, 16 figure
    corecore