988 research outputs found

    SMNは、骨格筋分化においてMYOD-miRNA 経路を制御することにより、ミトコンドリアの機能的成熟を促進する

    Get PDF
    京都大学新制・論文博士博士(医学)乙第13564号論医博第2291号新制||医||1068(附属図書館)京都大学大学院医学研究科医学専攻(主査)教授 齊藤, 博英, 教授 滝田, 順子, 教授 萩原, 正敏学位規則第4条第2項該当Doctor of Medical ScienceKyoto UniversityDFA

    Glucose-sulfate conjugates as a new phase II metabolite formed by aquatic crustaceans

    Get PDF
    ArticleBIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS. 360(2): 490-495 (2007)journal articl

    Estimation of sources and inflow of dioxins and polycyclic aromatic hydrocarbons from the sediment core of Lake Suwa, Japan

    Get PDF
    ArticleEnviromental Pollution. 138(3): 529-537 (2005)journal articl

    ZEB2 and MEIS1 independently contribute to hematopoiesis via early hematopoietic enhancer activation

    Get PDF
    血球細胞分化に必要な新たな因子を同定. 京都大学プレスリリース. 2023-09-29.Delineating the dynamic transcriptional and epigenetic landscape regulating hematopoiesis. 京都大学プレスリリース. 2023-10-17.Cell differentiation is achieved by acquiring a cell type-specific transcriptional program and epigenetic landscape. While the cell type-specific patterning of enhancers has been shown to precede cell fate decisions, it remains unclear how regulators of these enhancers are induced to initiate cell specification and how they appropriately restrict cells that differentiate. Here, using embryonic stem cell–derived hematopoietic cell differentiation cultures, we show the activation of some hematopoietic enhancers during arterialization of hemogenic endothelium, a prerequisite for hematopoiesis. We further reveal that ZEB2, a factor involved in the transcriptional regulation of arterial endothelial cells, and a hematopoietic regulator MEIS1 are independently required for activating these enhancers. Concomitantly, ZEB2 or MEIS1 deficiency impaired hematopoietic cell development. These results suggest that multiple regulators expressed from an earlier developmental stage non-redundantly contribute to the establishment of hematopoietic enhancer landscape, thereby restricting cell differentiation despite the unrestricted expression of these regulators to hematopoietic cells

    Organotypic Tissue Culture of Adult Rodent Retina Followed by Particle-Mediated Acute Gene Transfer In Vitro

    Get PDF
    BACKGROUND: Organotypic tissue culture of adult rodent retina with an acute gene transfer that enables the efficient introduction of variable transgenes would greatly facilitate studies into retinas of adult rodents as animal models. However, it has been a difficult challenge to culture adult rodent retina. The purpose of this present study was to develop organotypic tissue culture of adult rodent retina followed by particle-mediated acute gene transfer in vitro. METHODOLOGY/PRINCIPAL FINDINGS: We established an interphase organotypic tissue culture for adult rat retinas (>P35 of age) which was optimized from that used for adult rabbit retinas. We implemented three optimizations: a greater volume of Ames' medium (>26 mL) per retina, a higher speed (constant 55 rpm) of agitation by rotary shaker, and a greater concentration (10%) of horse serum in the medium. We also successfully applied this method to adult mouse retina (>P35 of age). The organotypic tissue culture allowed us to keep adult rodent retina morphologically and structurally intact for at least 4 days. However, mouse retinas showed less viability after 4-day culture. Electrophysiologically, ganglion cells in cultured rat retina were able to generate action potentials, but exhibited less reliable light responses. After transfection of EGFP plasmids by particle-mediated acute gene transfer, we observed EGFP-expressing retinal ganglion cells as early as 1 day of culture. We also introduced polarized-targeting fusion proteins such as PSD95-GFP and melanopsin-EYFP (hOPN4-EYFP) into rat retinal ganglion cells. These fusion proteins were successfully transferred into appropriate locations on individual retinal neurons. CONCLUSIONS/SIGNIFICANCE: This organotypic culture method is largely applicable to rat retinas, but it can be also applied to mouse retinas with a caveat regarding cell viability. This method is quite flexible for use in acute gene transfection in adult rodent retina, replacing molecular biological bioassays that used to be conducted in isolated cultured cells

    IC Chip to PC Board Connector System

    Get PDF
    In accordance with one embodiment of the present invention, an apparatus of moderate cost is provided which can readily releasably connect an integrated circuit to a circuit board. The apparatus includes a socket that can be readily mounted on the circuit board, the socket forming a largely rectangular cavity which closely receives the integrated circuit. The socket has a lower portion forming vertical through slots, each slot extending parallel to one of the sides of the rectangular socket. An elongated vertically-compressible interface device lies in each of the slots, each interface device having a row of compressible conductors with upper ends pressing against conductive pads on the underside of the integrated circuit, and each compressible conduc tor having a lower end pressing against a conductive trace on the circuit board. A cover or the like mounts on the socket and presses the integrated circuit down wardly into the socket, to compress the interface de vices to interconnect the integrated circuit to the circuit board

    Disaggregation Behavior of Amyloid β Fibrils by Anthocyanins Studied by Total-Internal-Reflection-Fluorescence Microscopy Coupled with a Wireless Quartz-Crystal Microbalance Biosensor

    Get PDF
    Noi K., Ikenaka K., Mochizuki H., et al. Disaggregation Behavior of Amyloid β Fibrils by Anthocyanins Studied by Total-Internal-Reflection-Fluorescence Microscopy Coupled with a Wireless Quartz-Crystal Microbalance Biosensor. Analytical Chemistry, 93(32), 11176-11183, August 17, 2021. Copyright © 2021, American Chemical Society. https://doi.org/10.1021/acs.analchem.1c01720.Amyloid fibrils are formed from various proteins, some of which cause the corresponding neurodegenerative disorders, such as Alzheimer's and Parkinson's diseases. It has been reported that many compounds inhibit the formation of amyloid fibrils. Anthocyanins are flavonoid pigments present in fruits and vegetables, which are known to suppress symptoms related with Alzheimer's disease. However, the influence of anthocyanins on the amyloid fibril remains unclear. Here, we succeeded in the direct monitoring of the disaggregation reaction of single amyloid β (Aβ) fibrils by anthocyanins using total-internal-reflection-fluorescence microscopy with a quartz-crystal microbalance (TIRFM-QCM). It is found that the disassembly activity to the Aβ fibrils depends on the number of hydroxyl groups in six-membered ring B of anthocyanin, and only delphinidin-3-galactoside, possessing three hydroxyl groups there, shows high disassembly activity. Our results show the importance of the number of hydroxyl groups and demonstrate the usefulness of TIRFM-QCM as a powerful tool in studying interactions between amyloid fibrils and compounds

    Heavy metal contamination of soil and sediment in Zambia

    Get PDF
    Heavy metal pollution is one of the most important problems in Zambia and causes serious effects to humans and animals. The aim of the present study was to evaluate the spatial distribution of heavy metals in main areas of Zambia and understand the characteristics of the pollution in each area. River and lake sediments and soil samples were collected from a large area of Zambia and analyzed for ten heavy metals (Cr, Co, Ni, Cu, Zn, As, Cd, Pb, Sr and Hg). The results indicate that heavy metal pollution in Zambia has strong regional differences. Using cluster analysis, the patterns of heavy metal pollution were divided into three major clusters: (1) Kabwe, (2) Copperbelt and (3) Lusaka and other areas. Heavy metals in the Copperbelt area are transported to downstream areas by the Kafue River. Pollution was also detected in national parks, and Lake Itezhi-tezhi has been polluted with high concentrations of Cu, possibly from mining activities in the upper reaches of the river. However, areas geographically distant from mining beds had only moderate or low heavy metal concentrations, although the concentrations of Pb and Zn were highly correlated with the populations of each town. Our findings indicate that heavy metal pollution in Zambia is still increasing, due to human activities, especially mining.Key words: Heavy metal, contamination, mining, soil, sediment

    SMN promotes mitochondrial metabolic maturation during myogenesis by regulating the MYOD-miRNA axis

    Get PDF
    脊髄性筋萎縮症における骨格筋病変の発症メカニズムの一部を解明. 京都大学プレスリリース. 2023-01-17.Pathogenesis of skeletal muscle lesions in spinal muscular atrophy. 京都大学プレスリリース. 2023-02-17.Spinal muscular atrophy (SMA) is a congenital neuromuscular disease caused by the mutation or deletion of the survival motor neuron 1 (SMN1) gene. Although the primary cause of progressive muscle atrophy in SMA has classically been considered the degeneration of motor neurons, recent studies have indicated a skeletal muscle–specific pathological phenotype such as impaired mitochondrial function and enhanced cell death. Here, we found that the down-regulation of SMN causes mitochondrial dysfunction and subsequent cell death in in vitro models of skeletal myogenesis with both a murine C2C12 cell line and human induced pluripotent stem cells. During myogenesis, SMN binds to the upstream genomic regions of MYOD1 and microRNA (miR)-1 and miR-206. Accordingly, the loss of SMN down-regulates these miRs, whereas supplementation of the miRs recovers the mitochondrial function, cell survival, and myotube formation of SMN-deficient C2C12, indicating the SMN-miR axis is essential for myogenic metabolic maturation. In addition, the introduction of the miRs into ex vivo muscle stem cells derived from Δ7-SMA mice caused myotube formation and muscle contraction. In conclusion, our data revealed novel transcriptional roles of SMN during myogenesis, providing an alternative muscle-oriented therapeutic strategy for SMA patients
    corecore