30 research outputs found
Quantitative analysis of UV photolesions suggests that cyclobutane pyrimidine dimers produced in mouse skin by UVB are more mutagenic than those produced by UVC
International audienc
太陽光中のUVA/UVBの比率の季節差がDNA損傷(6-4)型光産物のDewar型光産物への光異性化の効率に影響を及ぼす
The UVA and UVB components of sunlight can produce three classes of bipyrimidine DNA photolesions [cyclobutane pyrimidine dimers (CPDs), pyrimidine (6-4) pyrimidone photoproducts (6-4PPs) and related Dewar valence isomers (DewarPPs)]. The UVA/UVB ratio of sunlight is high in winter and low in summer in the Northern Hemisphere. Since UVB radiation produces 6-4PPs and UVA radiation converts them into DewarPPs through photoisomerization, it is expected that there may be differences in the photoisomerization of 6-4PPs between summer and winter, although that has never been documented. To determine that, isolated DNA was exposed to natural sunlight for 8 h in late summer and in winter, and absolute levels of the three classes of photolesions were quantified using calibrated ELISAs. It was found that sunlight produces CPDs and 6-4PPs in DNA at a ratio of about 9:1 and converts approximately 80% of 6-4PPs into DewarPPs within 3 h. Moreover, photoisomerization is more efficient in winter than in late summer after sunlight irradiation for the same duration, at similar solar UV doses and with the same induction level of CPDs. These results demonstrate that seasonal differences in the UVA/UVB ratio influence the efficiency of the photoisomerization of 6-4PPs into DewarPPs.博士(医学)・甲第775号・令和3年3月15日© 2020 The Authors. Photochemistry and Photobiology published by Wiley Periodicals LLC on behalf of American Society for Photobiology.
This is an open access article under the terms of the Creative Commons Attribution License(https://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited
UVA1 genotoxicity is mediated not by oxidative damage but by cyclobutane pyrimidine dimers in normal mouse skin
UVA1 induces the formation of 8-hydroxy-2′-deoxyguanosines (8-OH-dGs) and cyclobutane pyrimidine dimers (CPDs) in the cellular genome. However, the relative contribution of each type of damage to the in vivo genotoxicity of UVA1 has not been clarified. We irradiated living mouse skin with 364-nm UVA1 laser light and analyzed the DNA damage formation and mutation induction in the epidermis and dermis. Although dose-dependent increases were observed for both 8-OH-dG and CPD, the mutation induction in the skin was found to result specifically from the CPD formation, based on the induced mutation spectra in the skin genome: the dominance of C → T transition at a dipyrimidine site. Moreover, these UV-specific mutations occurred preferentially at the 5′-TCG-3′ sequence, suggesting that CpG methylation and photosensitization-mediated triplet energy transfer to thymine contribute to the CPD-mediated UVA1 genotoxicity. Thus, it is the CPD formation, not the oxidative stress, that effectively brings about the genotoxicity in normal skin after UVA1 exposure. We also found differences in the responses to the UVA1 genotoxicity between the epidermis and the dermis: the mutation induction after UVA1 irradiation was suppressed in the dermis at all levels of irradiance examined, whereas it leveled off from a certain high irradiance in the epidermis