38 research outputs found

    Untangling the immune landscape of colorectal cancer by in situ multiplex immunophenotyping

    Get PDF
    Colorectal cancer is one of the most diagnosed cancer types worldwide and incidence remains on the rise, especially in patients under 50. The prognosis for patients with CRC differs greatly and although immunotherapy has shown promising results  in a number of cancer types, not all CRC patients respond well to these treatments. This can in part be attributed to the differences in T cell infiltration between cancers but does not one on one translate to clinical response. Moreover, the activity of specific immune cells can directly influence other immune cells, both in an activating and inhibitory manner. This highlights the complexity of the tumour immune microenvironment and requires an comprehensive multiplex approach to simultaneously investigate all the players of the tumour immune microenvironment. Furthermore, the interaction between different immune cells and between those and cancer cells is essential to take into account, hence the need for an approach that combines multiplex immunophenotyping with spatial cell context. This will provide hints into the behaviour of the players of the tumour immune microenvironment and aid the understanding of CRC, but potentially of other cancer types as well. In this work we developed and applied multispectral immunophenotyping methodologies to strengthen our understanding of CRCLUMC / Geneeskund

    Semi-automated background removal limits data loss and normalizes imaging mass cytometry data

    Get PDF
    Imaging mass cytometry (IMC) allows the detection of multiple antigens (approximately 40 markers) combined with spatial information, making it a unique tool for the evaluation of complex biological systems. Due to its widespread availability and retained tissue morphology, formalin-fixed, paraffin-embedded (FFPE) tissues are often a material of choice for IMC studies. However, antibody performance and signal to noise ratios can differ considerably between FFPE tissues as a consequence of variations in tissue processing, including fixation. In contrast to batch effects caused by differences in the immunodetection procedure, variations in tissue processing are difficult to control. We investigated the effect of immunodetection-related signal intensity fluctuations on IMC analysis and phenotype identification, in a cohort of 12 colorectal cancer tissues. Furthermore, we explored different normalization strategies and propose a workflow to normalize IMC data by semi-automated background removal, using publicly available tools. This workflow can be directly applied to previously acquired datasets and considerably improves the quality of IMC data, thereby supporting the analysis and comparison of multiple samples.Imaging- and therapeutic targets in neoplastic and musculoskeletal inflammatory diseas

    Visual cohort comparison for spatial single-cell omics-data

    Get PDF
    Spatially-resolved omics-data enable researchers to precisely distinguish cell types in tissue and explore their spatial interactions, enabling deep understanding of tissue functionality. To understand what causes or deteriorates a disease and identify related biomarkers, clinical researchers regularly perform large-scale cohort studies, requiring the comparison of such data at cellular level. In such studies, with little a-priori knowledge of what to expect in the data, explorative data analysis is a necessity. Here, we present an interactive visual analysis workflow for the comparison of cohorts of spatially-resolved omics-data. Our workflow allows the comparative analysis of two cohorts based on multiple levels-of-detail, from simple abundance of contained cell types over complex co-localization patterns to individual comparison of complete tissue images. As a result, the workflow enables the identification of cohort-differentiating features, as well as outlier samples at any stage of the workflow. During the development of the workflow, we continuously consulted with domain experts. To show the effectiveness of the workflow, we conducted multiple case studies with domain experts from different application areas and with different data modalities.Imaging- and therapeutic targets in neoplastic and musculoskeletal inflammatory diseas

    Persuasive Technology for Human Well-Being: Setting the Scene

    Full text link
    In this short paper we aim to give a brief introduction to persuasive technology, especially as it pertains to human well-being. We discuss a number of current research opportunities in areas of healthcare, environmental conservation, and education. We conclude by highlighting what we regard as the key research challenges that need to be addressed, focusing on context sensing and appropriate feedback, the need for longitudinal user studies, and ethical concerns

    Transcriptomic and immunophenotypic profiling reveals molecular and immunological hallmarks of colorectal cancer tumourigenesis

    Get PDF
    ObjectiveBiological insights into the stepwise development and progression of colorectal cancer (CRC) are imperative to develop tailored approaches for early detection and optimal clinical management of this disease. Here, we aimed to dissect the transcriptional and immunologic alterations that accompany malignant transformation in CRC and to identify clinically relevant biomarkers through spatial profiling of pT1 CRC samples. DesignWe employed digital spatial profiling (GeoMx) on eight pT1 CRCs to study gene expression in the epithelial and stromal segments across regions of distinct histology, including normal mucosa, low-grade and high-grade dysplasia and cancer. Consecutive histology sections were profiled by imaging mass cytometry to reveal immune contextures. Finally, publicly available single-cell RNA-sequencing data was analysed to determine the cellular origin of relevant transcripts. ResultsComparison of gene expression between regions within pT1 CRC samples identified differentially expressed genes in the epithelium (n=1394 genes) and the stromal segments (n=1145 genes) across distinct histologies. Pathway analysis identified an early onset of inflammatory responses during malignant transformation, typified by upregulation of gene signatures such as innate immune sensing. We detected increased infiltration of myeloid cells and a shift in macrophage populations from pro-inflammatory HLA-DR(+)CD204(-) macrophages to HLA-DR(-)CD204(+) immune-suppressive subsets from normal tissue through dysplasia to cancer, accompanied by the upregulation of the CD47/SIRP alpha 'don't eat me signal'. ConclusionSpatial profiling revealed the molecular and immunological landscape of CRC tumourigenesis at early disease stage. We identified biomarkers with strong association with disease progression as well as targetable immune processes that are exploitable in a clinical setting.Cellular mechanisms in basic and clinical gastroenterology and hepatolog

    A 34-marker panel for imaging mass cytometric analysis of human snap-frozen tissue

    Get PDF
    Imaging mass cytometry (IMC) is able to quantify the expression of dozens of markers at sub-cellular resolution on a single tissue section by combining a novel laser ablation system with mass cytometry. As such, it allows us to gain spatial information and antigen quantificationin situ, and can be applied to both snap-frozen and formalin-fixed, paraffin-embedded (FFPE) tissue sections. Herein, we have developed and optimized the immunodetection conditions for a 34-antibody panel for use on human snap-frozen tissue sections. For this, we tested the performance of 80 antibodies. Moreover, we compared tissue drying times, fixation procedures and antibody incubation conditions. We observed that variations in the drying times of tissue sections had little impact on the quality of the images. Fixation with methanol for 5 min at -20 degrees C or 1% paraformaldehyde (PFA) for 5 min at room temperature followed by methanol for 5 min at -20 degrees C were superior to fixation with acetone or PFA only. Finally, we observed that antibody incubation overnight at 4 degrees C yielded more consistent results as compared to staining at room temperature for 5 h. Finally, we used the optimized method for staining of human fetal and adult intestinal tissue samples. We present the tissue architecture and spatial distribution of the stromal cells and immune cells in these samples visualizing blood vessels, the epithelium and lamina propria based on the expression of alpha-smooth muscle actin (alpha-SMA), E-Cadherin and Vimentin, while simultaneously revealing the colocalization of T cells, innate lymphoid cells (ILCs), and various myeloid cell subsets in the lamina propria of the human fetal intestine. We expect that this work can aid the scientific community who wish to improve IMC data quality.Stem cells & developmental biolog

    High-dimensional cytometric analysis of colorectal cancer reveals novel mediators of antitumour immunity

    Get PDF
    Objective A comprehensive understanding of anticancer immune responses is paramount for the optimal application and development of cancer immunotherapies. We unravelled local and systemic immune profiles in patients with colorectal cancer (CRC) by high-dimensional analysis to provide an unbiased characterisation of the immune contexture of CRC.Design Thirty-six immune cell markers were simultaneously assessed at the single-cell level by mass cytometry in 35 CRC tissues, 26 tumour-associated lymph nodes, 17 colorectal healthy mucosa and 19 peripheral blood samples from 31 patients with CRC. Additionally, functional, transcriptional and spatial analyses of tumour-infiltrating lymphocytes were performed by flow cytometry, single-cell RNA-sequencing and multispectral immunofluorescence.Results We discovered that a previously unappreciated innate lymphocyte population (Lin(-)CD7+(C)D127(-)CD56(+)CD45RO(+)) was enriched in CRC tissues and displayed cytotoxic activity. This subset demonstrated a tissue-resident (CD103(+)CD69(+)) phenotype and was most abundant in immunogenic mismatch repair (MMR)-deficient CRCs. Their presence in tumours was correlated with the infiltration of tumour-resident cytotoxic, helper and gamma delta T cells with highly similar activated (HLA-DR(+)CD38(+)PD(-)1(+)) phenotypes. Remarkably, activated gamma delta T cells were almost exclusively found in MMR-deficient cancers. Non-activated counterparts of tumour-resident cytotoxic and gamma delta T cells were present in CRC and healthy mucosa tissues, but not in lymph nodes, with the exception of tumour-positive lymph nodes.Conclusion This work provides a blueprint for the understanding of the heterogeneous and intricate immune landscape of CRC, including the identification of previously unappreciated immune cell subsets. The concomitant presence of tumour-resident innate and adaptive immune cell populations suggests a multitargeted exploitation of their antitumour properties in a therapeutic setting.Surgical oncolog

    Immunophenotype of gastric tumors unveils a pleiotropic role of regulatory T cells in tumor development

    Get PDF
    Simple SummaryThe role of regulatory T cells (Tregs) in gastric cancer (GC) is still controversial and poorly understood. GC patients have increased numbers of Tregs in peripheral blood and among tumor infiltrating lymphocytes; however, their prognostic value depends on specific tumor features (e.g., tumor location and/or microsatellite instability status). We found that Tregs might induce membrane expression of IL2R alpha in intestinal-type GC cells, which associates with MAPK signaling pathway activation and spheroid growth. Moreover, Tregs accumulate at early steps of intestinal-type GCs progression, when tumors are starting to grow through the stomach wall, and do not present vascular and perineural invasion. Our findings suggest a novel non-immunosuppressive role of Treg cells in intestinal-type GC, which may unlock novel therapeutic immuno-oncology strategies for intestinal-type GC or other tumors with similar immune context.Gastric cancer (GC) patients display increased regulatory T cell (Tregs) numbers in peripheral blood and among tumor-infiltrating lymphocytes. Nevertheless, the role of Tregs in GC progression remains controversial. Here, we sought to explore the impact of Tregs in GCs with distinct histology, and whether Tregs can directly influence tumor cell behavior and GC development. We performed a comprehensive immunophenotyping of 82 human GC cases, through an integrated analysis of multispectral immunofluorescence detection of T cells markers and patient clinicopathological data. Moreover, we developed 3D in vitro co-cultures with Tregs and tumor cells that were followed by high-throughput and light-sheet imaging, and their biological features studied with conventional/imaging flow cytometry and Western blotting. We showed that Tregs located at the tumor nest were frequent in intestinal-type GCs but did not associate with increased levels of effector T cells. Our in vitro results suggested that Tregs preferentially infiltrated intestinal-type GC spheroids, induced the expression of IL2R alpha and activation of MAPK signaling pathway in tumor cells, and promoted spheroid growth. Accumulation of Tregs in intestinal-type GCs was increased at early stages of the stomach wall invasion and in the absence of vascular and perineural invasion. In this study, we proposed a non-immunosuppressive mechanism through which Tregs might directly modulate GC cells and thereby promote tumor growth. Our findings hold insightful implications for therapeutic strategies targeting intestinal-type GCs and other tumors with similar immune context.MTG4Molecular tumour pathology - and tumour genetic

    CD103 and CD39 coexpression identifies neoantigen-specific cytotoxic T cells in colorectal cancers with low mutation burden

    Get PDF
    Background Expression of CD103 and CD39 has been found to pinpoint tumor-reactive CD8+ T cells in a variety of solid cancers. We aimed to investigate whether these markers specifically identify neoantigen-specific T cells in colorectal cancers (CRCs) with low mutation burden.Experimental design Whole-exome and RNA sequencing of 11 mismatch repair-proficient (MMR-proficient) CRCs and corresponding healthy tissues were performed to determine the presence of putative neoantigens. In parallel, tumor-infiltrating lymphocytes (TILs) were cultured from the tumor fragments and, in parallel, CD8+ T cells were flow-sorted from their respective tumor digests based on single or combined expression of CD103 and CD39. Each subset was expanded and subsequently interrogated for neoantigen-directed reactivity with synthetic peptides. Neoantigen-directed reactivity was determined by flow cytometric analyses of T cell activation markers and ELISA-based detection of IFN-γ and granzyme B release. Additionally, imaging mass cytometry was applied to investigate the localization of CD103+CD39+ cytotoxic T cells in tumors.Results Neoantigen-directed reactivity was only encountered in bulk TIL populations and CD103+CD39+ (double positive, DP) CD8+ T cell subsets but never in double-negative or single-positive subsets. Neoantigen-reactivity detected in bulk TIL but not in DP CD8+ T cells could be attributed to CD4+ T cells. CD8+ T cells that were located in direct contact with cancer cells in tumor tissues were enriched for CD103 and CD39 expression.Conclusion Coexpression of CD103 and CD39 is characteristic of neoantigen-specific CD8+ T cells in MMR-proficient CRCs with low mutation burden. The exploitation of these subsets in the context of adoptive T cell transfer or engineered T cell receptor therapies is a promising avenue to extend the benefits of immunotherapy to an increasing number of CRC patients.Experimental cancer immunology and therap

    Untangling the immune landscape of colorectal cancer by in situ multiplex immunophenotyping

    No full text
    Colorectal cancer is one of the most diagnosed cancer types worldwide and incidence remains on the rise, especially in patients under 50. The prognosis for patients with CRC differs greatly and although immunotherapy has shown promising results  in a number of cancer types, not all CRC patients respond well to these treatments. This can in part be attributed to the differences in T cell infiltration between cancers but does not one on one translate to clinical response. Moreover, the activity of specific immune cells can directly influence other immune cells, both in an activating and inhibitory manner. This highlights the complexity of the tumour immune microenvironment and requires an comprehensive multiplex approach to simultaneously investigate all the players of the tumour immune microenvironment. Furthermore, the interaction between different immune cells and between those and cancer cells is essential to take into account, hence the need for an approach that combines multiplex immunophenotyping with spatial cell context. This will provide hints into the behaviour of the players of the tumour immune microenvironment and aid the understanding of CRC, but potentially of other cancer types as well. In this work we developed and applied multispectral immunophenotyping methodologies to strengthen our understanding of CRC</p
    corecore